

Syllabus for Diploma Engineering

Civil Engineering

Semester – II

Subject Name: Applied Mechanics

Subject Code: 09CI1103

Diploma Branches in which this subject is offered: Civil, Mechanical and Automobile Engineering

Objective: Objectives of introducing this subject at first year level in all the branches are:

- To study the identification of different types of forces, systematic evaluation of the effect of these forces, the behavior of rigid bodies subjected to various types of forces, at the state of rest or motion of the particles.
- To create the base for the analysis of the structures for future semesters

Credits Earned: 5 Credits

Course Outcomes:

On the completion of the course student will be able to:

- Understand the principles of mechanics and their application to an engineering problem.
- Fundamental related to the subject will facilitate students to design structures, predict failure and understand the physical properties of materials in the higher semester.

Teaching Scheme (Hours)			Theory Marks			Tutorial/ Practical Marks		Total	
Theory	Tutorial	Practical	Cleans	ESE	IA	CSE	Viva	Term work	Marks
4	0	2	5	50	30	20	25	25	150

Teaching and Examination Scheme

Unit	Topics	Contact	Weightage
		hours	(%)
1	Introduction	02	5
-	Scalar and Vector quantities	•=	
	• System of units		
	• SI units and conversion		
	Principle of mechanics		
2	Coplanar Concurrent forces	02	5
	• Force, Force systems and Resultant		
	• Composition and resolution of force		
3	Coplanar Non-Concurrent forces	07	16
	• Concepts of Moment & Couple		
	• Resultant of non-concurrent force systems		
	• Equilibrant, Equilibrium of forces		
	• Types of load UDL and point		
	• Types of supports		
	• Types of beam and its support reaction.		
4	Centre of gravity and Centroid	04	10
	• Concept of center of gravity		
	• Center of mass & Centroid		
	• Centroid lines		
	• Plane areas of volumes and bodies		
5	Friction	07	16
	• Friction		
	• Types		
	• Applications		
	• Simple frictionless rigid body assemblies		
	• Rigid body assemblies including friction		
	• Friction for a body resting on horizontal plane &		
	on inclined plane		
6	Introduction to Dynamics	09	21
	• Kinematics of particle		
	• Concept of rectilinear motion		
	• Circular motion		
7	Projectile motion Work Deven and Energy	06	15
/	Work, Power and Energy	VO	15
	• Work done		
	• Force displacement diagram		
	• Work done by torque		
	• Work done by lorque • Kinetic & Potential energy and Engineering		
	Problems		
	• I H P and B H P of engine		

Syllabus for Diploma Engineering

Marwadi University

Civil Engineering

	• Equation of H.P in terms of Torque and R.P.M, Engineering Problems		
8	Simple Machine	05	12
	 Principles of machines to evaluate Mechanical Advantage 		
	• Velocity Ratio of simple machine		
	• Pulley blocks		
	• Draw Line sketch of different systems of Simple and compound levers		
	• Problems		
	• Laws of Machines		
	• Reversible & non reversible machines		

Suggested Theory distribution:

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

	Distribution	of Theory for co	ourse delivery a	nd evaluation	
Remember	Understand	Apply	Analyse	Evaluate	Create
35%	40%	15%	10%	0%	0%

Suggested List of Experiments:

Sr.	Name of Topics	Contact
No.		Hours
1	Demonstrate and prove Lami's theorem	3
2	Find out Resultant of Concurrent forces	3
3	Find out Resultant of Non Concurrent forces	3
4	To find Centre of Gravity of plane lamina	3
5	To find the support reaction of simply supported beam experimentally	3
6	To prepare a model of bridge using popsicle sticks such that it achieves the maximum load	3
7	To determine the coefficient of Static friction	3

Tutorials:

Syllabus for Diploma Engineering

Civil Engineering

Sr.	Name
No.	
1	Unit conversion and principle of Mechanics
2	Resultant force: concurrent
3	Non-concurrent force, Beam Reactions
4	CG and MI
5	Friction
6	Dynamics
7	Work Power energy
8	Simple machine

Instructional Method:

- a. The course delivery method will depend upon the requirement of content and need of students. The teacher in addition to conventional teaching method by black board, may also use any of tools such as demonstration, role play, Quiz, brainstorming, MOOCs etc.
- b. The internal evaluation will be done on the basis of continuous evaluation of students in the laboratory and class-room.
- c. Practical examination will be conducted at the end of semester for evaluation of performance of students in laboratory.
- d. Students will use supplementary resources such as online videos, videos, ecourses, Virtual Laboratory

Text Books:

Civil Engineering

Applied Mechanics S. B. Junarkar& H. J. Shah-Charotar Publication

Reference Books:

- 1. Engineering Mechanics by G. S. Sawhney; PHI New Delhi
- 2. Mechanics of Materials: Beer and Johnston, TMH
- 3. Mechanics of Materials: Gere & Timoshenko; CBS Publishers & Distributors, Delhi
- 4. Mechanics of Materials: Hibbler R C; Pearson Education
- 5. Engineering Mechanics of Solids: Popov E.P; Prentice Hall of India, New Delhi