

Syllabus for Bachelor of Technology Computer Engineering (Artificial Intelligence)

Subject Code: 01MA1281

Subject Name: Statistical and Numerical Methods

B.Tech. Year - II

Objective: Statistical and Numerical methods are one of the essential tools for learning Technology, Engineering and Sciences. This course lays the foundation for Numerical and statistical methods in subsequent semesters, so that students get a sound knowledge and important aspects of those techniques which can lead them to work in the platform of data science or artificial intelligence or any kind of statistics related field.

Credits Earned: 4 Credits

Course Outcomes: After completion of this course, student will be able to

- Understand the basic concepts of probability and distribution to realize the logic of data sciences. (Comprehension)
- Apply the concept of Data representation and Analysis in various field of engineering like image processing etc. (Application)
- Apply concept of Correlation and Regression in result analysis and Business forecasting using EXCEL. (Analysis)
- Define different types of errors for accuracy and precision of solutions to hike up the level of accuracy in daily calculations. (Knowledge)
- Express curve fitting and interpolation techniques to approximate a function into any known curve to analyse their behaviours. (Analysis)

Teaching Scheme (Hours)				Theory Marks			Tutorial/		Total
			Credit				Marks		Mark
Theor y	Tutoria l	Practica l	S	ESE (E)	Mid Se m (M)	Interna l (I)	Viv a (V)	Ter m work (TW)	S
3	2	-	4	50	30	20	25	25	150

Teaching and Examination Scheme

Contents:

Unit	Topics	Contact Hours
1	Data representation and Analysis	6
	Revision of basic concept of statistics, Measure of central tendency	
	and dispersion, Statistical diagram: scattered diagram, histogram,	
	ogive curve, pie charts etc., Use of EXCEL software to compute	
	statistical measures and diagrammatic representation	
2	Regression and Correlation	6
	Measure of association between two variables. Types of correlation,	
	Karl Pearson's Coefficient of correlation and its mathematical	
	properties, Spearman's Rank correlation and its interpretations,	
	Regression Analysis, linear regression equations, properties of	
	regression coefficients, Use in forecasting and estimation	
2	Computational till ough EXCEL.	0
5	Random variable and Probability distribution	ο
	continuous random variable Mass Density and cumulative	
	distribution functions expected values and variance of random	
	variable. Standard probability distributions.	
4	Errors in Digital computations	3
	Accuracy of numbers. Significant digits. Representation of numbers	-
	in computers, Computer arithmetic, Types of errors, Basic sources of	
	errors and Errors in computations with digital computer	
5	Roots of equations, Interpolation and Curve fitting	12
	Bisection method, False position (Regula-Falsi) and Newton-	
	Raphson, Finite difference, Forward and backward differences,	
	Interpolation and Extrapolation, Newton's forward interpolation	
	formula, Newton's backward interpolation formula, Lagrange's	
	interpolation formula and Newton's divided difference formula,	
	fitting	
6	Numerical Integration and solution of ordinary differential	7
U	equations	7
	Numerical Integration: Gaussian integration Newton – cotes	
	quadrature formula Composite rules: Trapezoidal rule and	
	Simpson's rules Solution of ODE by Euler's Runge-Kutta (2nd and	
	4 th order) methods	
	4 ^{sh} order) methods.	

Total Hours

42

References:

- **1.** Miller and Freund's Probability and Statistics for Engineers: Richard A Johnson,Prentice
- 2. Hall of India.
- **3.** Introductory Methods of Numerical Analysis: S.S. Sastry, Prentice Hall of India.
- **3.** Computer Oriented Numerical Methods: V. Rajaraman, Prentice Hall of India
- **4.** Numerical methods with programs in C++: S Balachandra Rao & C K Shantha
- **5.** Numerical Methods with programs in C and C++: Veerarajan & Ramchnadran. Tata McGraw Hill
- A textbook of Computer based numerical and Statistical Techniques: A. K. Jaiswal & Anju Khandelwal, New Age International Publishers.

Suggested Theory distribution:

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and								
evaluation								
Remember	Understand	Apply	Analyze	Evaluate	Create			
20%	30%	40%	10%	-	-			

Instructional Method:

- a. The course delivery method will depend upon the requirement of content and need of students. The teacher in addition to conventional teaching method by black board, may also use any of tools such as demonstration, role play, Quiz, brainstorming, MOOCs etc.
- b. The internal evaluation will be done on the basis of continuous evaluation of students in the laboratory and class-room.
- c. Practical examination will be conducted at the end of semester for evaluation of performance of students in laboratory.
- d. Students will use supplementary resources such as online videos, NPTEL videos, e-courses, Virtual Laboratory

Supplementary Resources:

- 1. http://mathworld.wolfram.com/
- 2. http://en.wikipedia.org/wiki/Math
- 3. http://numericalmethods.eng.usf