Narwadi Syllabus for Diploma Engineering

University Electrical Engineering

Semester – IV

Subject Name: Electrical Rotating AC Machines

Subject Code: 09EE0401

Diploma Branches in which this subject is offered: Electrical Engineering

Objective: This is one of the most important electrical engineering core subject. Electrical Machines are essential parts of our daily life. They are used in power plants to generate electrical power, in industries to provide mechanical work, also used in domestic, commercial and agriculture applications. Electrical machines can make our life easy. Students should know basic concept, construction, working, testing and maintenance of electrical machines.

Credits Earned: 6 Credits

Course Outcomes: After completion of this course, student will be able

- 1. To understand basic concept of electrical rotating AC machines.
- 2. To be understand the concept of starting, controlling and testing of three phase & single phase Induction Motor and Synchronous Motor.
- 3. To knowledge regarding various type of starter used in Induction motor, maintenance of Induction motor and application of Induction motor.
- 4. To understand basic construction of Synchronous machines and concept of synchronization of Alternator.
- 5. To understand working and application of synchronous motor
- 6. To analyse and understand working of various types of single phase Induction motor.
- 7. To analyse and understand construction, operating principle, working and application of various special electrical machines.

Pre-requisite of course: Basic knowledge of D.C. Circuits, A.C. Circuits and Electrical DC Machine and Transformer

Teaching Scheme (Hours)			Cradita	Theory Marks		Tutorial/ Practical Marks		Total	
Theory	Tutorial	Practical	Credits	ESE	IA	CSE	Viva	Term work	Marks
4	0	2	6	50	30	20	25	25	150

Teaching and Examination Scheme

Marwadi University Syllabus for Diploma Engineering Electrical Engineering

Contents:

Unit	Topics	Contact	Weightage	
		hours	(%)	
1	Three Phase Induction Motor	15	27	
	• Introduction			
	• Rotating Magnetic Field			
	 Producing Rotating Field 			
	• Types of Three Induction Motor			
	 Construction of Induction Motor 			
	• Principle of Operation			
	• Working of Three Phase Induction Motor			
	• Synchronous Speed, Rotor Speed, Slip			
	• Rotor EMF and its Frequency			
	• Rotor Torque			
	• Starting Torque			
	Running Torque			
	 Starting and Running Condition 			
	• Effect of Change in Supply Voltage and			
	Frequency Together on Torque and Speed			
	• Full load Torque and Maximum Torque			
	 Starting Torque and Maximum Torque 			
	• Torque Speed and Torque Slip Characteristics of Induction Motor			
	• Losses and Power Stage Diagram of Induction Motor			
	• Relation Between Rotor Input, Slip and Rotor Copper Loss			
	• Starting of Induction Motor			
	• Need of Starters of Induction Motor			
	• Types of Starter			
	• Relation between Starting Torque and Full Load			
	Torque with the use of Starter			
	• Speed Control of Induction Motor			
	• Equivalent Circuit and Vector Diagram of Induction Motor			
	Maximum Power Output			
	Circle Diagram of Induction Motor			
	Measurement of Slip			
	Performance Curve of Induction Motor			
	• Cogging and Crawling			
	• Effect of Unbalance Supply Voltage on Induction Motor			

MarwadiSyllabus for Diploma EngineeringUniversityElectrical Engineering

	Induction Motor Testing		
	• Maintenance of Induction Motor		
	• Application of Induction Motor		
	• Type of Enclosure of Induction Motor		
	• Rating of Induction Motor		
2	Synchronous Generator	13	23
	• Introduction		
	• Basic Principle of Alternator		
	• Producing Sinusoidal Alternating EMF		
	• Excitation System		
	• Types of Alternator		
	 Construction of Synchronous Machine 		
	• Comparison between Two types of Alternator		
	• Advantages of Rotating Field Over Rotating		
	Armature		
	 Armature Winding and its Type 		
	 Parameters of Armature Winding 		
	 Pitch Factor and Distribution Factor 		
	 Full Pitch and Short Pitch Winding 		
	• Effect on Pitch Factor and Distribution Factor on Induced EMF		
	 Armature Reaction and its Compensation 		
	• Synchronous Reactance and Impedance		
	• Vector Diagram of Alternator		
	• Voltage Drop in Alternator		
	 Voltage Regulation of Alternator 		
	 Methods of Determining Voltage Regulation 		
	 Load Characteristics of an Alternator 		
	 Comparison between various methods of determining Voltage Regulation 		
	• Parallel Operation of Alternators and its Need		
	• Infinite Bus-Bar		
	• Performance of Alternator		
	 Method of checking Phase Difference 		
	• Synchronization of Alternator and Method of		
	Synchronizing		
	 Procedure of Synchronizing Alternator 		
	• Effect of Change in Excitation and Steam Input		
	• Cooling of Alternator		
	• Losses and Efficiency of Alternator		
	• Power Flow in an Alternator		
	• Specification and Rating of Alternator		
	• Testing of Alternator		
	• Maintenance of Alternator		
	Application of Alternator		

MarwadiSyllabus for Diploma EngineeringUniversityElectrical Engineering

3	Synchronous Motor	10	18
	• Introduction		
	 Construction of Synchronous Motor 		
	 Working Principle of Synchronous Motor 		
	• Types of Synchronous Motor		
	 Main Features of Synchronous Motor 		
	• Important Characteristics of Synchronous Motor		
	• General Procedure to Start Synchronous Motor		
	• Starting Method for a Synchronous Motor		
	• Back EMF in Synchronous Motor		
	Equivalent Circuit		
	 Synchronous Motor on No Load 		
	• Vector Diagram of Synchronous Motor on Load		
	• Losses, Efficiency and Power Flow Chart of		
	Synchronous Motor		
	 Power Developed by Synchronous Motor 		
	 Relation Between Load Angle and Torque 		
	• Various Condition for Maximum Power		
	• Advantages and Disadvantages of Synchronous		
	Motor		
	 Synchronous Motor is a Constant Speed Motor 		
	 Different Torque of Synchronous Motor 		
	• Haunting		
	• Type of Excitation System		
	• V Curve and Inverted V Curve		
	• Procedure of Drawing V Curve of Synchronous		
	Motor		
	 Synchronous Condenser and its Application 		
	 Synchronous Phase Modifier 		
	 Application of Synchronous Motor 		
	 Rating of Synchronous Motor 		
	• Trouble in Synchronous Motor		
	• Testing and Maintenance of Synchronous Motor		
	• Comparison Between Synchronous Motor and		
	Induction Motor		
4	Single Phase Induction Motor	9	16
	• Introduction		
	 Classification of Single Phase Motor 		
	• Construction of Single Phase Induction Motor		
	• Reason for Single Phase Induction Motor Not Self- Starting		
	Double Field Revolving Theory		
	Cross Field Theory		
	• Method of Starting Single Phase Induction		
	Motor		
	1110101		

MarwadiSyllabus for Diploma EngineeringUniversityElectrical Engineering

	• Methods of Self Starting for Single Phase Induction Motor		
	• Types of Single Phase Induction		
	• Speed Control of Fractional Horse Power Motor		
	• Speed Control of Single Phase Motor Using		
	Electronic Circuit		
	• Equivalent Circuit of Single Phase Induction		
	Motor		
	• Advantages and Disadvantages of Single Phase		
	Induction Motor		
	• Application of Single Phase Induction Motor		
	• Testing and Maintenance of Single Phase		
	Induction Motor		
	• Rating of Single Phase Induction Motor		
5	Special Electrical Machines	9	16
	• Introduction		
	• Construction, Working and Application of		
	various Special electrical machines		
	• Linear induction Motor		
	• Induction Generator		
	• Submersible Motor		
	• AC Commutator Motor		
	• AC Series Motor		
	• Universal Motor		
	• Repulsion Motor		
	• Single Phase Synchronous Motor		
	• Schrage Motor		
	• Servo Motor		
	• Stepper Motor		
	PMMC Motor		
	Reluctance Motor		
	Hysteresis Motor		

Suggested Theory distribution:

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation						
Remember	Understand	Apply	Analyse	Evaluate	Create	
35%	35%	15%	15%	0%	0%	

Syllabus for Diploma Engineering

Electrical Engineering

Suggested List of Experiments:

Sr.	Unit	Name of Topics	Contact
No.	No.		Hours
1	1	To Study the Construction of Three Phase Induction Motor with the Help of Cut Section Model	2
2	1	To Perform No Load and Block Rotor Test on Three Phase Induction Motor and Also Prepare Circle Diagram	2
3	1	To Perform Load Test on Three Phase Induction Motor Using Applying Mechanical Brake, Also Draw Performance Curve	2
4	1	To Study of the Various Starters of Three Phase Induction Motor and Make Connection with Three Phase Induction Motor	2
5	1	To Perform and Study Speed Control of Three Phase Induction Motor	2
6	1	To Perform and Study Speed Control of Three Phase Induction Motor by V/f Method	2
7	2	Determination of Voltage Regulation of Alternator by Synchronous Impedance Method and MMF Method for Various Power Factor	2
8	2	Determination of Voltage Regulation of Alternator by ZPF Method for Various Power Factor	2
9	2	To Perform the Synchronization of Three Phase Alternator Using Different Method	2
10	3	To Draw V- Curve and Inverted V-Curve of Synchronous Motor at different Load Condition	2
11	4	To Test Circuit of Capacitor Start Capacitor Run Type Single Phase Induction Motor	2
12	4	To Perform Load and No-Load Test on Single Phase Induction Motor	2
13	4	To Perform Speed Control of Single Phase Induction Motor also Check Reverse Rotation	2
14	5	To Study about the Induction Generator, Universal Motor, Stepper Motor and PMDC Motor	2

Marwadi Syllabus for Diploma Engineering

University Electrical Engineering

Instructional Method:

- a. The course delivery method will depend upon the requirement of content and need of students. The teacher in addition to conventional teaching method by black board, may also use any of tools such as demonstration, role play, Quiz, brainstorming, MOOCs etc.
- b. The internal evaluation will be done on the basis of continuous evaluation of students in the laboratory and class-room.
- c. Practical examination will be conducted at the end of semester for evaluation of performance of students in laboratory.
- d. Students will use supplementary resources such as online videos, NPTEL videos, e-courses, Virtual Laboratory
- e. Show video or animation of working of various rotating AC machines.

References:

- 1. B. L. Theraja and A. K. Theraja, "A Text Book of Electrical Technology Vol-II", S. Chand & Co. Ltd., 2015
- 2. V.K. Mehta and Rohit Mehta, "*Principal of Electrical Machine*", S. Chand & Co. Ltd., 2010
- 3. D.P. Kothari and I.J. Nagrath, "*Electrical Machines*", Tata-McGraw-Hill, 2011.
- 4. Ashfaq Husain and Haroon Ashfaq, "*Electrical Machines*", Dhanpat Rai & Co. LTD., 2017
- 5. J. B. Gupta, "*Theory and Performance of Electrical Machine*", S. K. Kataria & Sons, 2016
- 6. U. A. Bakshi & M. V. Bakshi, "*Electrical Machine-II*", Technical Publication Pune, 2012
- 7. Smarajit Ghosh, "*Electrical Machines*", Pearson, 2012

Supplementary Resources:

- 1. https://onlinecourses.nptel.ac.in/noc17_ec10/course/
- 2. http://iitg.vlab.co.in/?sub=61&brch=168
- 3. http://vlab.amrita.edu/index.php
- 4. http://nptel.iitm.ac.in/courses.php
- 5. <u>https://www.youtube.com/watch?v=dZyO5gcWP-o</u>
- 6. https://nptel.ac.in/courses/108105053/29
- 7. https://nptel.ac.in/courses/108105053/30