

## Syllabus for Master of Science in Biotechnology

Subject Code: 02BT0505

Subject Name: Lab III

M. Sc. Semester - III

**Objectives**: To enable students with practical skills of advanced and applied subjects of biotechnology.

**Credits Earned: 6 Credits** 

**Course Outcomes**: After completion of this course:

- 1. Students will be able plan and execute experiments of Industrial and environmental importance.
- 2. Students will be able to synthesize and use nano-particles for experiments.
- 3. Students will become trained in experiment optimization.
- 4. Students will be able to relate the lab scale studies with industrial setup.

**Teaching and Examination Scheme** 

| Teaching Scheme (Hours) |          |           | Credits | Theory Marks |           |        | Tutorial/ Practical<br>Marks |                   | Total |
|-------------------------|----------|-----------|---------|--------------|-----------|--------|------------------------------|-------------------|-------|
| Theory                  | Tutorial | Practical | Credits | ESE<br>(E)   | IA<br>(M) | CSE(I) | Viva<br>(V)                  | Practicals/<br>TW | Marks |
| 0                       | 0        | 12        | 6       | 0            | 0         | 0      | 100                          | 100               | 200   |



## Syllabus for Master of Science in Biotechnology

## **Contents:**

| Contents: |                                                                                        |                  |  |  |  |
|-----------|----------------------------------------------------------------------------------------|------------------|--|--|--|
| Module    | List of Experiments                                                                    | Contact<br>Hours |  |  |  |
| 1         | Bioprocess Technology (Core)                                                           | 70               |  |  |  |
|           | 1. Primary screening of microorganisms for Enzyme/ Antibiotic/                         |                  |  |  |  |
|           | Organic acid production.                                                               |                  |  |  |  |
|           | 2. To perform Bioassay of Antibiotics.                                                 |                  |  |  |  |
|           | 3. Strain improvement programme by mutation using physical and/or chemical method.     |                  |  |  |  |
|           | 4. Laboratory scale fermentation for Alcohol production.                               |                  |  |  |  |
|           | 5. Laboratory scale fermentation for Enzyme production.                                |                  |  |  |  |
|           | 6. Laboratory scale fermentation for Organic acid production.                          |                  |  |  |  |
|           | 7. Effect of physicochemical parameters on fermentation process and                    |                  |  |  |  |
|           | product yield.                                                                         |                  |  |  |  |
|           | 8. Purification of fermentation product using chromatography.                          |                  |  |  |  |
|           | 9. Immobilization of enzyme.                                                           |                  |  |  |  |
|           | 10. Sterility test of pharmaceutical products.                                         |                  |  |  |  |
|           | 11. Solid substrate fermentation.                                                      |                  |  |  |  |
|           | 11. Solid substrate leffilentation.                                                    |                  |  |  |  |
| 2         | Genetics and Genetic Engineering (Core)                                                | 65               |  |  |  |
| _         | 1. To perform Bacterial Transformation of E. coli by chemical                          |                  |  |  |  |
|           | competence method.                                                                     |                  |  |  |  |
|           | 2. To perform restriction endonuclease digestion of given plasmid.                     |                  |  |  |  |
|           | 3. To design primers using various Online/Offline tools for PCR                        |                  |  |  |  |
|           | application.                                                                           |                  |  |  |  |
|           | 4. To perform PCR for given DNA template.                                              |                  |  |  |  |
|           | 5. To perform DNA cloning using positive selection/ blue-white                         |                  |  |  |  |
|           | screening method.                                                                      |                  |  |  |  |
|           | 6. To perform over expression of given gene using <i>E. coli</i> protein               |                  |  |  |  |
|           | expression strain.                                                                     |                  |  |  |  |
|           | 7. To design strategies for deletion, insertion and point mutation using mutagenic PCR |                  |  |  |  |
|           | 8. To perform mapping of Plasmid DNA using theoretical approach.                       |                  |  |  |  |
|           | 9. To harness the use of online/offline tools to analyse design strategies             |                  |  |  |  |
|           | for genetic engineering.                                                               |                  |  |  |  |
| 3         | Nano-Biotechnology (Elective)                                                          | 45               |  |  |  |
|           | 1. Synthesis of metallic Nanoparticles – Gold seeds, Gold Nanorods,                    |                  |  |  |  |
|           | Silver, dimetallic- trimetallic NPs, quantum dots                                      |                  |  |  |  |
|           | 2. Green Synthesis of Nanoparticles                                                    |                  |  |  |  |
|           | 3. Spectroscopic studies of nanoparticles                                              |                  |  |  |  |
|           | 4. Interaction of nanoparticles with microbes.                                         |                  |  |  |  |
|           | <ol> <li>Detection of biomolecules via nanosensors.</li> </ol>                         |                  |  |  |  |
|           | 5. Detection of diomolecules via nanosensors.                                          | 1                |  |  |  |



| - | Food and Dairy Technology (Elective)                                             | 45 |  |  |  |  |  |  |  |
|---|----------------------------------------------------------------------------------|----|--|--|--|--|--|--|--|
|   | 1. Isolation of probiotic culture from various sources. Evaluation and           |    |  |  |  |  |  |  |  |
|   | efficacy of probiotic culture                                                    |    |  |  |  |  |  |  |  |
|   | 2. Isolation and identification of lactic acid bacteria and production of lactic |    |  |  |  |  |  |  |  |
|   | acid                                                                             |    |  |  |  |  |  |  |  |
|   | 3. Production of fermented food and characterization of acidity, alkalinity      |    |  |  |  |  |  |  |  |
|   | and its microbial profile                                                        |    |  |  |  |  |  |  |  |
|   | 4. Estimation of ascorbic acid in beverage/juices.                               |    |  |  |  |  |  |  |  |
|   | 5. Determination of water activity of different food materials.                  |    |  |  |  |  |  |  |  |
|   | 6. Determination of adulterant (NaHCO <sub>3</sub> ) in wheat flour/ Maida.      |    |  |  |  |  |  |  |  |
|   | 7. Determination of Gluten content in wheat flour samples.                       |    |  |  |  |  |  |  |  |
|   | 8. Determination of microbiological quality (TPC/SPC) of any food                |    |  |  |  |  |  |  |  |
|   | sample: pasteurized and sterilized/ flavored                                     |    |  |  |  |  |  |  |  |
|   | milk/cheese/butter/veg/fruit/bread/meat samples.                                 |    |  |  |  |  |  |  |  |
|   | 9. Tests for Milk and Dairy products                                             |    |  |  |  |  |  |  |  |
|   | a. Phosphatase test                                                              |    |  |  |  |  |  |  |  |
|   | b. MBRT test                                                                     |    |  |  |  |  |  |  |  |
|   | c. Test for mastitis                                                             |    |  |  |  |  |  |  |  |
|   | d. Milk fat estimation                                                           |    |  |  |  |  |  |  |  |
|   | e. Standard Plate Count (for milk / milk product e.g. milk powder)               |    |  |  |  |  |  |  |  |
|   | f. Direct Microscopic count                                                      |    |  |  |  |  |  |  |  |
|   | g. Somatic cell count                                                            |    |  |  |  |  |  |  |  |
|   | 10. Pyrogen Testing 11. Determination of moisture content in food sample.        |    |  |  |  |  |  |  |  |
|   |                                                                                  |    |  |  |  |  |  |  |  |
|   | Environmental Technology (Elective)                                              |    |  |  |  |  |  |  |  |
|   | 1. Wastewater analysis of TDS, TSS and TS.                                       |    |  |  |  |  |  |  |  |
|   | 2. Determination of BOD in wastewater.                                           |    |  |  |  |  |  |  |  |
|   | 3. Analysis of COD in wastewater.                                                |    |  |  |  |  |  |  |  |
|   | 4. Vermicomposting: Collection, Preparation and Analysis of composted            |    |  |  |  |  |  |  |  |
|   | material for Nitrogen, Phosphate and Potassium (NPK).                            |    |  |  |  |  |  |  |  |
|   | 5. Effect of pesticides/heavy metals on soil microorganisms.                     |    |  |  |  |  |  |  |  |
|   | 6. Microbial degradation of textile dyes/pesticides/hydrocarbons and oils.       |    |  |  |  |  |  |  |  |
|   | 7. Determination coliform bacterial count.                                       |    |  |  |  |  |  |  |  |
|   | 8. Constructed wetlands – Modelling (Tutorial).                                  |    |  |  |  |  |  |  |  |
|   | o. commission introducting (1 atolital).                                         |    |  |  |  |  |  |  |  |