

Syllabus for Master of Technology

Subject Code: 01CA0303

Subject Name: Robotics Engineering

M.Tech. II Year - (Sem-3) CAD/CAM

Type of course: Program Elective

Prerequisite: Kinematics, Control Engineering

Rationale: - To provide comprehensive knowledge of robotic configurations, kinematics,

singularity, dynamics, trajectory planning and control of robotic manipulators.

Teaching and Examination Scheme:

Teaching Scheme (Hours)			Evaluation Scheme						
Teaching	g Scheme ((Hours)		Th	eory Ma	rks	Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE (E)	IA	CSE	Viva (V)	Term Work (TW)	Marks
3		2	5	50	30	20	25	25	150

Course outcome

Students will be able to

- 1. Synthesize various configuration with different joints for required degrees of freedom
- 2. Understand the various approaches to write position as well as motion equations for open and closed loop configurations
- 3. Apply the concept of DH convention for forward and inverse kinematics
- 4. Know the role of friction models and control strategies for various tasks performed by robots

Sr. No	Торіс	Lectures	Weight age
1	General considerations of Robotic Manipulator Robot anatomy; Feasible configurations of kinematic chains with prismatic, revolute, cylindrical and spherical joints. Degree of freedoms; Homogeneous transformation; Generalized rotations, Description of robotic pose, Orientation with RPY and Euler angles (Forward and inverse formulations)	05	10%
2	Kinematics of Robotic Manipulators Direct Kinematics, Inverse Kinematics for open and closed architectures; D-H representation; Work space analysis, Singularity analysis, Performance measurement indices (Condition number, reciprocal condition number, Manipubality index, GCI, GPI, GSI)	10	25%
3	Dynamic Analysis of Robotic Manipulators Considerations of forces, moments and torques for robotic configurations; Dynamics formulations using Newtonian, Lagrangian and Hamiltonian principle, Properties of dynamic equations	09	25%

4	Trajectory Generation Path and Trajectory, Joint space versus Cartesian space trajectories, Higher order polynomials; Linear function with parabolic blends; numerical based on different motion trajectories.	10%
5	Introduction to grippers, sensors and actuators Types of grippers, Properties of grippers, Types of sensors along with working principle, sensor properties, Translational and rotary actuators and their selection.	10%
6	Motion Control of Robotic manipulators Robotic open and closed loop control systems, Second order systems, Non – linear closed loop equation of motion, Different friction models, Control	20%

Distribution of Theory Marks

R Level	U Level	A Level	N Level	E Level	C Level		
10	10	20	15	25	20		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze, and E: Evaluate

References:

- 1. Robotics control, sensing, vision and intelligence, K S Fu, R C Gonzalez, CSG Lee, Tata McGraw Hill Edition 2008
- 2. Introduction to robotics, John J Craig, Pearson/Prentice Hall, 2005, Third edition
- 3. Introduction to Robotics: Analysis, Control, Applications , Saeed Niku, John Wiley & Sons
- 4. Introduction to Robotics, S K Saha, Tata McGraw-Hill
- 5. Robotics and control, R K Mittal, I J Nagrath, Tata McGraw Hill 2003
- 6. A Robot Engineering Textbook , Mohsen Shahinpoor, Harper and Row, Publisher, New York

List of Experiments:

- 1. Synthesize the robotic configuration for specific degrees of freedom as given by instructor
- 2. Direct kinematics implementation for open/closed loop robotic configurations
- 3. Inverse kinematics implementation for open/closed loop robotic configurations
- 4. Coding/simulation of direct kinematics for open/closed loop configurations along with work space generation using high end software
- 5. Formulation of DH parameters of robot configuration and its simulation using open source software
- 6. Lagrangian formulation of the given configuration along with its coding/ validation using simulation software
- 7. Newtonian formulation of the given configuration along with its coding/ validation using simulation software
- 8. Design of trajectory for a specific task as given by instructor
- 9. Simulation/ performance of a trajectory planning of a robot

10. Simulation/performance on the control of open kinematic architecture