

Subject Code: 01CA0104

Subject Name: Advanced Material Processing Techniques

M.Tech. I Year - (Sem-1) CAD/CAM

Type of course: Program Elective

Prerequisite: Engineering Materials

Rationale:- Intention is to develop an understanding of the principles, capabilities, limitations and applications of commonly used advanced materials processing technologies; and in-depth knowledge of non-traditional materials processing, metal forming and micro-machining.

Teaching and Examination Scheme:

Taashing Sahama (Hauna)				Evaluation Scheme					
Teaching	g Scheme ((Hours)		Th	Theory Marks Practical Marks			Total	
Theory	Tutorial	Practical	Credits	ESE (E)	IA	CSE	Viva (V)	Term Work (TW)	Marks
4		2	5	50	30	20	25	25	150

Course outcome

Students will be able to

- **1.** Students will learn various non-conventional machining processes and will be able to select their respective parameters.
- 2. Students will learn fine finishing processes, micro-machining and fabrication of micro-devices.
- 3. Students will also learn materials processing using lesser.

SR No	CONTENTS	TOTAL HOURS	WEIGHTAGE
1	Overview: Outline of advanced materials processing techniques: Non-Conventional Materials Removal Processes; Finishing Processes; Forming; Advanced Surface Engineering Processes; Joining Technologies.	02	06%

2	Advances in Nonconventional Machining Processes: A brief review of non-conventional machining processes, Analysis of mechanical, thermal and Electrochemical type non-traditional machining processes. Tool design for selected non-traditional machining processes. Modeling and simulation of selected processes. A comparative study of various processes.	10	22%
3	Advanced Fine Finishing Process: Abrasive Flow Machining; Magnetic Abrasive Finishing; Magneto Rheological Abrasive Finishing: Process principle, process equipment; Analysis and modeling of finishing mechanism; Parametric analysis; Applications.	07	15%
4	Advances in Metal Forming: Conventional processes-High Energy Rate Forming techniques-Explosive forming, electro hydraulic forming, magnetic pulse forming, super plastic forming, rubber forming, flow forming- Principles and process parameters, Advantages , Limitations and Applications. Overview of powder metal forming technique, Advantages, applications, Powder perform forging, Hot and cold Iso-static pressing-powder rolling, Tooling and process parameters.	09	22%
5	Micro-Machining: Introduction to micromachining technologies, Micro electro discharge Machining: Principles of micro-EDM, micro-EDM by Die-sinking and WEDG, micro-WEDM, micro-WEDG, micro-ECM, Principles of micro-turning, micro-drilling and micro-milling, micro grinding, hybrid micro-machining method, on-line measurement by machine vision and integrated probe, Measuring Techniques in micro-machining, surface integrity and other related measurements.	06	15%
6	Fabrication of Micro-Devices: Semiconductors – films and film de purification – Oxidation – diffusion – ion implantation – etching – metallization – bonding – surface and bulk machining – LIGA Process – Solid free form fabrication	04	10%
7	Laser Material Processing: Fundamentals of industrial lasers. Laser materials interaction theories. Laser processing for various industries such as metals, non-metals, photovoltaic, bio-medical applications.	04	10%

Distribution of Theory Marks					
R Level	U Level	A Level	N Level	E Level	
20	25	25	15	15	

Distribution of Theory Marks

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze, and E: Evaluate

Reference Books:

- 1. Fundamentals of Modern Manufacturing: Materials, Processes, and Systems, M P Groover Wiley India.
- 2. Manufacturing Engineering and Technology, 4/e, Serope Kalpakjian, Steven R Schmid, Pearson Education.
- 3. Manufacturing Processes for Engineering Materials, 5/e, Serope Kalpakjian Pearson Education
- 4. Modeling of Metal Forming and Machining Processes by Finite Element and Soft Computing Methods, P M Dixit, U M Dixit Springer.
- 5. Modern Machining Processes, Pandey, P.C., and Shan, H.S.Tata McGraw-Hill Education
- 6. Micromachining of Engineering Materials J.A. McGeough. CRC Press.
- 7. Fundamentals of Micro fabrication Mark Madou CRC Press
- 8. Advance Method of Machining McGeough, J.A Springer.
- 9. Laser Processing of Materials: Fundamentals, Applications and Developments, Peter Schaaf Springer

List of Experiments:

- 1. A comparative study of working principle and applications of various non-conventional machining processes.
- 2. A comparative study of working principle and applications of various finishing processes.
- 3. Evaluation effects process parameters in Metal forming processes.
- 4. A comparative study of working principle and applications of various Micro-Machining processes, and study effects of process parameters of them.
- 5. Study of process parameters of Laser processing