

Subject Code: 01CA101

Subject Name: Computational Method in Mechanical Engineering

M.Tech. I Year – (Sem-1) CAD/CAM

Type of course: Engineering science Program core

Rationale: The course intends to provide mathematical foundations to graduate students. The course should enhance their ability to develop mathematical models and solve problems using analytical and numerical methods.

Teaching and Examination Scheme:

				Evaluation Scheme					
Teaching Scheme (Hours)			Credits	Theory Marks		Practical Marks		Total	
Theory	Tutorial	Practical	Creans	ESE (E)	IA	CSE	Viva (V)	Term Work (TW)	Marks
3	2		4	50	30	20	25	25	150

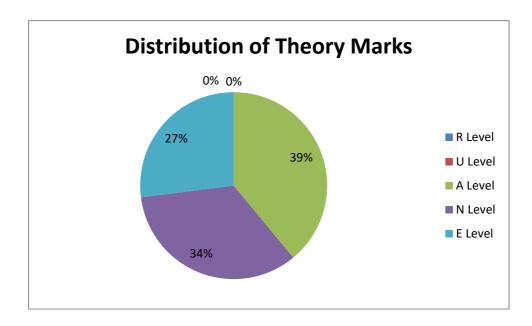
Course outcome

Students will be able to

- 1. Students will be able to develop mathematical models of physical phenomena.
- **2.** Students will be able to solve ordinary and partial differential equations analytically as well as numerically.
- **3.** Students will learn fundamentals and applications of algebra for engineering problems.
- 4. Students will learn fundamentals of statistics and probability.

SR No	CONTENTS	TOTAL HOURS	WEIGHTAGE
1	Differential Equations : Basic Concepts: Modeling, Differential Equations, Ordinary and Partial differentiation, Order of the equation, Solution, Existence and Uniqueness of Solution, Initial Value problem, Boundary Value Problem, Linear and Non-Linear Equation. 1st Order ODE: Geometric Meaning of $y'= f(x, y)$, Direction Fields, Euler's Method; Separable ODEs; Exact ODEs (Integrating Factors Method, Existence and Uniqueness of Solution); Linear ODEs(Homogeneous and Non-Homogeneous, Reduction to Linear problems); Orthogonal Trajectories. 2nd Order ODE: Linear Dependence and Linear Independence; Homogeneous Linear ODEs of Second Order (Principal of Superposition, Initial Value Problem, Boundary Value Problem);	08	17%

	Homogeneous Linear ODEs with Constant Coefficients (Euler's formula and review of the circular and hyperbolic function, Exponential Solutions, Repeated Roots and Stability); Differential Operator; Modeling of Free Oscillations of Spring-Mass System; Homogeneous Linear ODEs with Non Constant Coefficient (Cauchy-Euler Equation, Existence and Uniqueness of Solutions); Non-homogeneous ODE, Modeling of Forced Oscillations, Solution by Variation of Parameters.		
2	Laplas Transforms: Laplace Transform, Linearity, First Shifting Theorem (Shifting); Transforms of Derivatives and Integrals, ODE; Unit Step Function (Heaviside Function), Second Shifting Theorem (t-Shifting); Short Impulses, Dirac's Delta Function, Partial Fractions; Convolution, Integral Equations; Differentiation and Integration of Transforms, ODEs with Variable Coefficients; Systems of ODEs.	05	11%
3	Linear Algebra: Matrices and Vectors: Vectors in 2-Space and 3-Space; Addition and Scalar Multiplication, Matrix Multiplication; Linear Systems of Equations and Gauss elimination, Ill-Conditioning, Linear Independence, Rank of a Matrix, Solutions of Linear Systems: Existence and Uniqueness; Determinants and Cramer's Rule; Inverse of a Matrix, Gauss–Jordan Elimination; Solution by Iteration. Vector Spaces, Inner Product Spaces, Norms, Linear Transformations; Matrix Eigenvalues, Determining Eigenvalues-Eigenvectors and their applications; Power Method for Eigenvalues; Symmetric, Skew-Symmetric, and Orthogonal Matrices; Eigenbases, Diagonalization Tridiagonalization and LU-Factorization, QR-Factorization, , Quadratic Forms; Complex Matrices and Forms.	07	15%
4	Vector Calculus: Vector Product; Vector and Scalar Functions and Their Fields, Vector Calculus: Derivatives; Curves, Arc Length, Curvature, Torsion; Gradient of a Scalar Field, Directional Derivative; Divergence of a Vector Field, Curl of a Vector Field. Line Integrals, Path Independence of Line Integrals; Green's Theorem in the Plane, Surfaces for Surface Integrals, Surface Integrals; Triple Integrals, Divergence Theorem of Gauss, Further Applications of the Divergence Theorem, Stokes's Theorem.	05	11%
5	Fourier Analysis and PDE: Fourier Series; Arbitrary Period, Even and Odd Functions, Half-Range Expansions; Forced Oscillations; Approximation by Trigonometric Polynomials; Sturm–Liouville Problems, Orthogonal Functions; Orthogonal Series, Generalized Fourier Series; Fourier Integral;	08	17%


	Fourier Cosine and Sine Transforms; Fourier Transform, Discrete and		
	Fast Fourier Transforms.		
	Basic Concepts of PDEs; Modeling: Vibrating String, Wave Equation; Solution by Separating Variables; Use of Fourier Series; D'Alembert's Solution of the Wave Equation, Characteristics; Modeling: Heat Flow from a Body in Space, Heat Equation: Solution by Fourier Series. Steady Two-Dimensional Heat Problems, Dirichlet Problem; Modeling Very Long Bars: Solution by Fourier Integrals and Transforms, Modeling: Membrane, Two-Dimensional Wave Equation; Rectangular Membrane, Double Fourier Series; Laplacian in Polar Coordinates, Circular Membrane, Fourier–Bessel Series; Laplace's Equation in Cylindrical and Spherical Coordinates, Potential; Solution of PDEs by Laplace Transforms.		
6	Numeric Analysis: Introduction, Solution of Equations by Iteration, Interpolation, Newton's Divided-Difference Interpolating Polynomials, Lagrange Interpolating Polynomials, Coefficients of an Interpolating Polynomial, Inverse Interpolation; Spline Interpolation, Numeric Integration and Differentiation. Numeric Methods for: First-Order ODEs, Multistep Methods, Systems and Higher (up to second) Order ODEs, Elliptic PDEs, Neumann and Mixed Problems, Irregular Boundary, Parabolic PDEs, Hyperbolic PDEs.	**	10%
7	Probability: Data Representation, Average, Spread; Experiments, Outcomes, Events; Probability, Permutations and Combinations; Random Variables. Probability Distributions; Mean and Variance of a Distribution; Binomial, Poisson, and Hyper geometric Distributions; Normal Distribution	03	06%
8	Statistics: Introduction, Random Sampling; Point Estimation of Parameter, Confidence Intervals; Testing Hypotheses, Decisions; Goodness of Fit, X2 - Test, Nonparametric Tests, Regression, Linear Regression, Polynomial Regression, General Linear Regression, Nonlinear Regression, Correlation	06	13%
** (Should be covered during practical session only.		<u> </u>

** Should be covered during practical session only. Distribution of Theory Marks

R Level	U Level	A Level	N Level	E Level		
0	0	39	34	27		

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze, and E: Evaluate

Reference Books:

- 1. Advanced Engineering Mathematics, 9/e, By Erwin Kreyszig, JOHN WILEY & SONS, INC.
- 2. Advanced Engineering Mathematics, 2/e, By M D Greenberg, Pearson Education
- 3. Numerical Methods for Engineers, S C Chapra, and R C Canale, McGraw-Hill

List of Experiments:

Prepare computer program (using any computer software) for following topics:

- 1. Solution of first order differential equation using numerical techniques
- 2. Solution of nonlinear equation using bisection method, false position and Newton Raphson method.
- 3. Interpolation by Lagrange, Newton's divided-difference and spline method.
- 4. Numerical integration by trapezoidal and Simpson's rules.
- 5. Matrix operations and power method for Eigen values and Eigen vectors.
- 6. Finding DFT of one dimensional signal.
- 7. Solving linear systems of equation using elimination and iteration methods.
- 8. Solution of PDE by finite difference method
- 9. Fitting a straight line and quadratic curve to the given data.
- 10. Finding mean and variance of binomial, Poison & hyper geometric distribution.