

Syllabus for Master of Technology

Subject Code: 01CA0203

Subject Name: Finite Element Analysis

M.Tech. I Year – (Sem-2) CAD/CAM

Type of course: Core

Rationale: The subject aims to introduce numerical methods for solving governing equations of mechanical systems. The class of problems include 1D and 2D structural, thermal and fluid problems; beams and frames and 3D structural problems. Introduction to non-linear and dynamic problems is also included.

Teaching and Examination Scheme:

Teaching Scheme (Hours)			Evaluation Scheme						
reaching S	cheme (no	ours)		Tl	neory Mar	ks	Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE (E)	IA	CSE	Viva (V)	Term Work (TW)	Marks
3		2	4	50	30	20	25	25	150

Sr. No.	Topics	Teaching Hrs.
1	Mathematical models for structural problems: Equilibrium of continuum-Differential formulation, Energy Approach-Integral formulation, Principle of Virtual work - Variational formulation. Overview of approximate methods for the solution of the mathematical models: Rayleigh-Ritz methods, Methods of Weighted Residuals (Galerkin, Least-squares).	5
2	Bars, Trusses and Beams Relevance of finite element analysis in design, Modelling and discretization, Shape functions, elements and Degrees-of-Freedom, Strain – displacement relation, Local and Global equations, Applications of FEA. Iso-Sub-Super parametric formulations. 1D Elements Structural Problems: Linear and Quadratic elements, Elimination and Penalty Approach, Properties of global stiffness matrix. 1D thermal conduction and fluid flow problems. Formulation of Truss element, Plane truss. Beam: Element formulation, plane frames, various loading and boundary conditions.	15
3	2D and 3D Elements: Gauss Quadrature formula, Gauss Quadrature in two and three dimensions. Plate stress and plane strain matrices. Triangular (CST, LST) and Rectangular (Q4, Q8) Elements: Shape function, Jacobian matrix, strain-displacement matrix, stress-strain relationship matrix, force vector, Limitations of elements. Types of 3D elements and their comparison.	7
4	Plate and Shell Elements: Introduction, thin and thick plates: Kirchoff theory, Mindlin plate element, conforming and nonconforming elements, degenerated shell elements, reduced and selective integration, shear locking and hour glass phenomenon.	6

Syllabus for Master of Technology

5	Dynamic Problems:	
	Formulation of dynamic problems, consistent and lumped mass matrices	
	Solution of eigenvalue problems: Transformation methods Jacobi method, Vector Iteration	
	methods, subspace iteration method.	
6	Non-Linearity:	
	Introduction and types of non-linearity, Formulation for geometrical and material non-	2
	linearity.	

Reference Books:

- 1. A First Course in the Finite Element Method, D Logan, Thompson Learning
- 2. Concepts and Applications of Finite Element Analysis, R D Cook, D S Malkus, M E Plesha, and R J Witt, Wiley.
- 3. Text book of Finite Element Analysis, Seshu P., PHI.
- 4. Finite Element Procedures, Bathe K. J., PHI.
- 5. Introduction to Finite Elements in Engineering, Chandrupatla T. R. and Belegunda A. D., PHI.
- 6. The Finite Element Method A Practical Course, Liu G. R. and Quek S. S., Butterworth-Heinemann.
- 7. Finite element Method in Engineering, S S Rao, Elsevier.

Course Outcome:

Sr. No.	Course Outcome	Percentage weightage
CO-1	Students will be able to understand the concept of finite element method and develop algorithms for analysis of mechanical systems.	10%
CO-2	Students will be able to apply the knowledge of FEM for 1D stress analysis, modal analysis, heat transfer analysis and flow analysis.	30%
CO-3	Students will be able to formulate and solve problems of trusses, beams and frames, students will also be able to use commercial packages for complex problems.	30%
CO-4	Students will be able to develop 2-D FE formulations involving triangular, quadrilateral elements and higher order elements.	30%

List of Experiments:During practical sessions, various problems should from syllabus topics should be solved using FEA software. Wherever feasible, problems should also be solved with manual calculations.

- 1. Introduction to Finite Element Analysis software.
- 2. Solve 1D Structural, thermal and fluid problems using FEA software.
- 3. Solve Plane truss problems, using FEA software. Include problems with symmetry.
- 4. Solve Beam problems with different boundary and loading conditions using FEA software.
- 5. Solve 2D problems using different element types in a FEA software. Also analyse effect of element formulation and number of elements.
- 6. Solve 3D problems using FEA software.
- 7. Solve plate and shell problems using FEA software.
- 8. Solve Dynamic problems using FEA software.

Major Equipment:

1. Computational facility and FEA solver.

Syllabus for Master of Technology

List of Open Source Software/learning website:

- 1. NPTEL courses
- 2. Scilab Software