Subject code: **13PH0604**
Subject name: **Biopharmaceutics and Pharmacokinetics**

Scope: This subject is designed to impart knowledge and skills of Biopharmaceutics and pharmacokinetics and their applications in pharmaceutical development, design of dose and dosage regimen, and in solving the problems raised therein.

Objective: Upon completion of the course the student shall be able to:
1. Understand the basic concepts in biopharmaceutics and pharmacokinetics and their significance.
2. Use of plasma drug concentration-time data to calculate the pharmacokinetic parameters to describe the kinetics of drug absorption, distribution, metabolism, excretion, elimination.
3. To understand the concepts of bioavailability and bioequivalence of drug products and their significance.
4. Understand various pharmacokinetic parameters, their significance & applications.

Teaching and assessment scheme:

<table>
<thead>
<tr>
<th>Teaching Scheme (Hours)</th>
<th>Credits</th>
<th>Theory/ Tutorial Marks</th>
<th>Practical Marks</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theory</td>
<td>3</td>
<td>CSE 10</td>
<td>TW 00</td>
<td>75</td>
</tr>
<tr>
<td>Tutorial</td>
<td>1</td>
<td>IA (I) 15</td>
<td>Viva (V) 00</td>
<td></td>
</tr>
<tr>
<td>Practical</td>
<td>0</td>
<td>ESE (E) 75</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theory syllabus:

Unit-1
Introduction biopharmaceutics to absorption: Mechanisms of drug absorption through GIT, factors influencing drug absorption through GIT, absorption of the drug from Non per oral extra-vascular routes Distribution Tissue permeability of drugs, binding of drugs, apparent, the volume of drug distribution, plasma and tissue protein binding of drugs, factors affecting protein-drug binding. Kinetics of protein binding, Clinical significance of protein binding of drugs.

Unit-2
Elimination: Drug metabolism and basic understanding metabolic pathways renal excretion of drugs, factors affecting renal excretion of drugs, renal clearance, Non-renal routes of drug excretion of drugs Bioavailability and Bioequivalence: Definition and Objectives of bioavailability, absolute and relative bioavailability, measurement of bioavailability, *in-vitro* drug dissolution models, *in-vitro-in-vivo* correlations, bioequivalence studies, methods to enhance the dissolution rates and bioavailability of poorly soluble drugs.

Unit-3
Pharmacokinetics: Definition and introduction to Pharmacokinetics, Compartment models, Non-compartment models, physiological models, One compartment open model.
(a). Intravenous Injection (Bolus)
(b). Intravenous infusion and
(c) Extravascular administrations.
Pharmacokinetics parameters K_e, $t_{1/2}$, V_d, AUC, K_a, Cl, and CLR definitions methods of eliminations, understanding of their significance and Application.

Unit-4
Multicompartment models: Two compartment open model. IV bolus Kinetics of multiple...
dosing, steady-state drug levels, calculation of loading and maintenance doses and their significance in clinical settings.

Unit-5

7 Hours

Tutorials will be based on the above syllabus.

Teaching hours: 15 Hours

Recommended References (Latest edition):

1. Biopharmaceutics and Clinical Pharmacokinetics by, Milo Gibaldi.
2. Biopharmaceutics and Pharmacokinetics; By Robert F Notari.
5. Pharmacokinetics: By Milo Gibaldi Donald, R. Merce Dekker Inc.
7. Biopharmaceutics; By Swarbrick.