Marwadi University

Master of Technology

Civil Engineering (Transport)

01TR0304: Transportation Facility Design

Objective of the Course: Objectives of introducing this subject at second year level in Masters of civil engineering are:

- To make the students aware of designing of the Highways
- To develop concepts related Terminal functions, analysis of terminals, process flow charts of passenger & goods terminals
- To learn basic principles of design of intersections, signal coordination

Credit Earned:4 Students learning outcomes:

After successful completion of the course it is expected that student will be able to..

- 1. To pick up understanding of principles of designing of Highways.
- 2. To study the importance of the Terminal and its components
- 3. To apply the various aspects of Signal design and its Co-ordination

Teaching and Examination Scheme

Teaching Scheme (Hours)			Con Aire	Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE (E)	CSE (M)	Internal (I)	Viva (V)	Term Work (TW)	Marks
3	0	2	4	50	20	30	25	25	150

Master of Technology

Civil Engineering (Transport)

Sr	Title of the unit	Number		
No.		of hours		
1	Introduction	7		
	Design of highways, design of at-grade intersections, design of			
	signalized intersection, design of grade separated intersection,			
	terminal design, and design of facilities for non-motorized transport			
2	Terminal Planning & Design:			
	Terminal functions, analysis of terminals, process flow charts of			
	passenger & goods terminals, terminal processing time, waiting time,			
	capacity & level of service concept, study of typical facilities of			
	highway, transit, airport and waterway terminals, concept of inland			
	port.			
3	Design of Highways:	10		
	Hierarchy of highway system, functions, design designations,			
	concepts in horizontal & vertical alignment, integration, optical			
	design, geometrical standards for mobility & accessibility			
	components, landscaping and safety considerations, evaluation and			
	design of existing geometrics			
4	Design of Intersections:	10		
	Review of design of at-grade intersections, signal coordination-			
	graphic methods & computer techniques, grade separated			
	intersections -warrants for selection, different types & geometric			
	standards, spacing & space controls, ramps & gore area design.			

Suggested lists of experiments

- 1. Problems based on design of at-grade intersections, signalized intersection.
- 2. Problems based on design of grade separated intersections.
- 3. Problems based on design of facilities required for non-motorized transport and pedestrians.
- 4. Problems based on design of terminals for passenger and goods on highway, railway, airport and waterway port.
- 5. Problems based on design of horizontal and vertical alignment of highways with landscaping and safety aspects.

Marwadi University

Master of Technology

Civil Engineering (Transport)

Suggested Theory Distribution

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation								
Remember	Understand	Apply	Analyze	Evaluate	Create			
10%	15%	10%	35%	20%	10%			

Instructional Method and Pedagogy:

- 1. Use of Learning Management system like canvas
- 2. Demonstration through ppt and videos and lectures
- 3. Brainstorming and group discussion sessions
- 4. Collaborative learning

Recommended Study Material:

Reference Book:

- 1. Kadiyali, L.R., Traffic Engineering and Transport Planning, Khanna publishers.
- 2. IRC-SP41: Guidelines for the Design of At-Grade Intersections in Rural & Urban Areas
- 3. Salter, R J., Highway Traffic Analysis and Design, ELBS. 4. Edward K. Morlock, Introduction to Transportation Engineering & Planning, International Student Edition, Mc-Graw Hill Book Company, New York.

Web Resources

- http://nptel.ac.in/
- www.scilab.org/
