

Syllabus for Master of Technology

Civil Engineering (Geotechnical)

Advanced Foundation Engineering 01GT0103 (PC)

Objective of the Course: Objectives of introducing this subject at first year level in Masters of civil engineering are:

- To Impart the knowledge of the sub surface investigation and bore log report interpretation
- To developed the knowledge and skills for evaluating the bearing capacity of the soil
- To Analyze and evaluate the load carrying capacity of the various types of foundation

Credits Earned:5

Students learning outcomes:

After the successful completion of the course it is expected that student would be able to....

- 1. Conduct the site investigation for a proposed structure and prepare the report
- 2. Apply the knowledge of the bearing capacity theories and test to evaluate the Safe bearing capacity of the soil for a given site
- 3. Analyze the foundation for its load carrying capacity and estimate the settlement
- 4. Select appropriate foundation for given structure/machine and soil conditions

Teaching and Examination Scheme

Teaching Scheme (Hours)			Gradita	Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE (E)	CSE (M)	Internal (I)	Viva (V)	Term Work (TW)	Marks
4	0	2	5	50	20	30	25	25	150

Syllabus for Master of Technology

Civil Engineering (Geotechnical)

Detailed Syllabus

Sr	Title of the unit	Number				
No.		of hours				
1	Sub Soil Exploration					
	Site investigation objectives & techniques,					
	CPT SPT SCPT & PLT tests					
	Geophysical methods	1				
	Preparation of Borelog & its Interpretation.					
	Typical value-ranges for different soil conditions and Report					
	writing					
2	Shallow Foundation					
	Bearing capacity of soil, Terzaghi 's, Meyerhoff, Hansens bearing					
	capacity theories, based on SPT					
	layered soils					
	Eccentric and inclined loads. Bearing capacity on slopes	2				
	Settlement of Foundations	2				
3	Design of Combined and Raft Foundations :					
	Design of combined footings by Conventional method	1				
	elastic line methods.	1				
	Rectangular, Trapezoidal and strap footings	4				
4	Pile foundation					
	Load carrying capacity of piles,	1				
	Pile group, Group efficiency					
	Lateral resistance of piles					
	settlement of piles					
	Negative skin friction & its consideration in design	1				
5	Machine Foundation					
	Types of machine & suitable foundations	1				
	General criteria for design of machine foundation Resonance &					
	frequency ratio					
	Soil dynamic parameters	1				
	Block type machine foundation Principles of Design of Foundations for					
	reciprocating and impact machines as per IS code.					
6	Special Foundations					
	Footing subjected to moments, tension					
	introduction to Piled Raft foundation	1				

Suggested List of Experiments:

- 1. Conduct field standard penetration test
- 2. Demonstration of Plate load test
- 3. Demonstration of Cone penetration test
- 4. Demonstration of cyclic triaxial shear test
- 5. Demonstration of site investigation & preparation of the bore log report

Civil Engineering (Geotechnical)

Suggested Theory Distribution

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation								
Remember	Understand	Apply	Analyze	Evaluate	Create			
5%	20%	15%	30%	20%	10%			

Instructional Method and Pedagogy:

- 1. Use of Learning Management system like canvas
- 2. Demonstration through ppt and videos and lectures
- 3. Brainstorming and group discussion sessions
- 4. Collaborative learning

Recommended Study Material:

Reference Book:

- 1. Joseph Bowles, "Foundation Analysis and Design", McGraw-Hill Book Company.
- 2. Braja M. Das, "Principles of Foundation engineering", PWS Publishing Company.
- 3. Braja M. Das, Principles of Soils Dynamics, McGraw Hill, 1992.
- 4. Shamsher Prakash et al, Analysis, Design of foundations and Retaining Structures Sarita Prakashan.
- 5. Kaniraj, Design Aids in Soil Mech. and Found. Engg., Tata McGraw, 1995.
- 6. Tomlinson, Found. Design and Const., 6th Edition, Longman Pub., 1995.
- 7. Swami Saran, Soil Dynamics and Machine Foundation, Galgotia publications Pvt. Ltd., New Delhi 1999.
- 8. Barkon, D.D., Dynamics of Basis of Foundation, McGraw Hill, 1974.
- 9. Vaidyanathan, C.V., and Srinivasalu, P., Handbook of Machine Foundations, McGraw Hill, 1995.
- 10. Poulos, H.G., Davis, E.H., Pile foundation analysis and design, John Wiley and Sons, New York, 1980.
- 11. V.N.S. Murthy, "Advanced Foundation Engineering", CBS Publishers and Distributors

Web Resources

Advanced Foundation engineering NPTEL course: http://nptel.ac.in/courses/nptel_download.php?subjectid=105105039