

Syllabus for Master of Technology

Civil Engineering (Geotechnical)

Finite Element methods in Geotechnical Engineering 01GT0203 (PC)

Objective of the Course: Objectives of introducing this subject at first year level in Masters of civil engineering are:

- 1. To enable student with fundamentals of Finite element method
- **2.** To impart the knowledge and skill of analyzing physical problems with FE software
- **3.** To Understand the basic functions of FE based software and its applications in Geotechical engineering

Credits Earned:4

Students learning outcomes:

After the successful completion of the course student will be able to..

- 1. Select the appropriate element and mesh for FE analysis for given problem
- 2. Evaluate the type of problem and develop the FE-model.
- 3. Estimate the stresses and strain in soil through FE analysis for given physical problem

Teaching Scheme (Hours)			C i'u	Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE (E)	CSE (M)	Internal (I)	Viva (V)	Term Work (TW)	Marks
3	2	0	4	50	20	30	25	25	150

Teaching and Examination Scheme

Syllabus for Master of Technology

Civil Engineering (Geotechnical)

Detailed Syllabus

Sr	Title of the unit	Number			
No.		of hours			
1	Introduction				
	Matrix Algebra – Inversion of matrix – solution of large number of				
	simultaneous equations,				
	FEM Hisotry and its applications				
	Discretization of continuum, types of elements, displacement				
	models, convergence requirements				
	Equations of equilibrium and compatibility, stress-strain relations,				
	plane stress and plane strain and axi-symmetric problems				
2	Displacement approach of FEM				
	Using Generalized coordinates Computations of element				
	properties shape function Strain displacement matrix and stiffness				
	matrix for				
	bar elements beam elements, truss elements	3			
	constant strain triangle, linear strain triangle	3			
	Quadrilateral elements	2			
3	Numerical Integration Gauss Quadrature Technique	3			
4	Using Natural coordinates /Isoperametric formulation				
	Computations of element properties shape function Strain				
	displacement matrix and stiffness matrix for				
	bar elements beam elements, truss elements				
	constant strain triangle, linear strain triangle	3			
	Quadrilateral elements	2			
5	Introduction to nonlinear analysis				
	Techniques of nonlinear analysis, Constitutive modeling for soils,	3			
	Non linear- soil parameters				
6	FEM software				
	Pre processor & Post processing techniques				
	Applications to study of embankment dams, problem of strip				
	footing, excavations, stress distribution around opening etc.				

Civil Engineering (Geotechnical)

Suggested Theory Distribution

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation									
Remember	Understand	Apply	Analyze	Evaluate	Create				
10%	25%	10%	35%	20%	00%				

Instructional Method and Pedagogy:

- 1. Use of Learning Management system like canvas
- 2. Demonstration through ppt and videos and lectures
- 3. Brainstorming and group discussion sessions
- 4. Collaborative learning

Recommended Study Material:

Reference Books:

- 1. Finite Element Method Desai & Able
- 2. A First Course in the Finite Element Method D. L. Logan
- 3. Finite Element Method Y. M. Desai, T. I. Eltho and A. H. Shah
- 4. Introduction to Finite Elements in Engineering Chandrupatla, R.T. & Belegundu, A.D

Web resources:

- 1. http://nptel.ac.in/courses/112104116/
- 2. http://nptel.ac.in/downloads/105108141/
