

Syllabus for Master of Technology

Civil Engineering (Geotechnical)

Geospatial Techniques

01GT0205 (PEC)

Objective of the Course:

The main objectives of offering this course in second semester of Master of Geotechnical engineering are as following:

- 1. To impart the fundamentals of GIS, RS & GPS
- 2. Enable student to read and interpret the GIS images
- 3. Introduce with the applications of GIS & RS to geotechnical engg

Credits Earned: 5

Students learning outcomes:

After successful completion of the course it is expected that student will be able to..

- 1. Read and interpreate the GIS/RS data/image
- 2. Analyse the land use and land cover area through mapping with GPS & GIS

Teaching and Examination Scheme

Teaching Scheme (Hours)			Guadita	Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	creats	ESE (E)	CSE (M)	Internal (I)	Viva (V)	Term Work (TW)	Marks
4	0	2	5	50	20	30	25	25	150

Syllabus for Master of Technology

Civil Engineering (Geotechnical)

Detailed Syllabus

Sr	Title of the unit	Number			
No.		of hours			
1	Concepts and fundamentals				
	Energy sources, energy interactions, ideal and real remote sensing	3			
	systems, fundamentals of air photo interpretation, keys				
	Elements of air photo interpretation for terrain evaluation				
	Data acquisition, various remote sensing platforms, satellites,				
	sensors, multi spectral scanners, microwave sensing				
2	Base data generation				
	Data acquisition, various remote sensing platforms, satellites,				
	sensors, multi spectral scanners, microwave sensing.				
	Digital image processing, equipment used for remote sensing	2			
	Some aspects of interpretation, ground truth.	2			
3	Structure of GIS				
	Geographic Data Representation, Storage, Quality and Standards,	4			
	database management systems				
	Raster data representation, Vector data representation,	2			
	Assessment of data quality, Managing data errors, Geographic	3			
	data standards.				
4	GIS Data Processing, Analysis and Modelling				
	Vector based GIS data processing , Queries, Spatial analysis,	6			
	Descriptive statistics, Spatial autocorrelation, Quadrant counts and				
	nearest neighbor analysis				
	Raster based GIS data processing. Network analysis. Surface	5			
	modeling. DTM. GIS Applications: Case studies.				
5	GPS				
	Basic concepts, components, factors affecting, GPS setup,	3			
	accessories, segments satellites & receivers,				
	GPS applications, Case studies	2			
	GIS and GPS, Engineering applications, land use/land cover	2			
	mapping,				
	Applications to urban and regional planning, Water resources.	2			
	environmental studies, transportation engineering, other civil				
	engineering fields.				

Civil Engineering (Geotechnical)

Suggested Theory Distribution

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation								
Remember	Understand	Apply	Analyze	Evaluate	Create			
10%	20%	20%	30%	20%	00%			

Instructional Method and Pedagogy:

- 1. Use of Learning Management system like canvas
- 2. Demonstration through ppt and videos and lectures
- 3. Brainstorming and group discussion sessions
- 4. Collaborative learning

Recommended Study Material:

Reference Book:

- 1. Bolstad P. (2005) GIS Fundamentals: A First Text on Geographic Information Systems, Second Edition, White Bear Lake, MN, Eider Press
- 2. Elangovan K. (2006) GIS: Fundamentals, Applications and Implementations, New India Publishing Agency, New Delhi
- 3. Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind, D. W., Geographic Information Systems and Science, 2nd Edition, John Wiley and Sons, 2005.
- 4. Burrough, P. A., and McDonnell, R. A., Principles of Geographical Information Systems, 2nd Edition, Oxford University Press, 1998

Web Resources

- 1. https://gis.harvard.edu/training/non-credit-training/virtual-training
- 2. https://www.futurelearn.com > ... > Maps and the Geospatial Revolution
- 3. http://nptel.ac.in/downloads/105102015/
