

Master of Technology

Structural Engineering

APPLICATION OF NUMERICAL & STATISTICAL METHODS IN STRUCTURAL ENGINEERING

01ST1108 (PEC)

Objective of the Course:

• Enable students to apply the knowledge of numerical methods to solve the real-world problems of structural engineering.

Credit Earned: 3

Students learning outcomes:

After successful completion of the course, it is expected that student will be able to

- 1. Apply the FDM/ interpolation techniques for structural engineering problems.
- 2. Apply the of solution techniques of linear system to solve structural engineering problems
- 3. Apply Numerical Integration to solve structural engineering problems
- 4. Analyze the probability and statistical approach to solve structural engineering problems

Teaching and Examination Scheme

Teaching Scheme (Hours)			Credite	Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE (E)	IA (M)	CSE (I)	Viva (V)	Term Work (TW)	Marks
03	00	00	03	50	30	20	25	25	150

Detailed Syllabus

Sr. No.	Title of the unit	Number of hours
1	Solution to algebraic non-linear equations	6
	Bisection Method, Regular Falsi method, Secant method, Newton	
	Raphson iterations to find roots of a 1D nonlinear equation 2	
	Newton Iterations, Introduction to Excel	
2	Solution of simultaneous Linear systems Direct solution	6
	Iterative solutions: Jacobi iteration. Gauss Seidel iteration.	

Master of Technology

Structural Engineering

	SOR Method, Direct Solutions: Gauss elimination, Gauss Jordan	
	elimination with and without pivoting, LU Decomposition	
3	Finite differences and Interpolation	6
	Finite differences, Newton's forward interpolation, Newton	
	backward interpolation, Lagrange's interpolation, Newton divided	
	difference method	
4	Solution of Ordinary Differential Equations:	7
	Taylor's method, Euler's method, Runge-Kutta second & fourth	
	order method, Milne's Predictor-corrector method, finite	
	difference method	
5	Numerical Quadrature:	4
	Trapezoidal rule, Simpsons Rule, Gauss Quadrature, Romberg	
	integration	
6	Correlation & Regression	7
	Types of Correlation, spearman's rank method, Karl Pearson's	
	method, Regression coefficients, Regression lines, Principle of	
	least squares.	
7	Probability & Distribution	6
	Probability Conditional Probability, Bayes' theorem, Random	
	variable, Mathematical expectations, Normal Distribution	
	TOTAL HOURS	42

Suggested Theory Distribution

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation							
Remember	Understand	Apply	Analyze	Evaluate	Create		
5%	5%	20%	25%	25%	20%		

Recommended Study Material:

Reference Book:

- 1. Numerical methods in Engineering Salvadori& Baron
- 2. Numerical Methods in Finite Element Analysis Bathe & Wilson
- 3. Advanced Mathematics Kresysig
- 4. Numerical Analysis Scarborough
- 5 Fundamental of mathematical statistics-S.C.Gupta ,V.K.Kapoor,Sultan chand & sons
- 6. Probability and Statistics for Engineers -Johnson Richard, Prentice India Ltd.