

Master of Technology

Structural Engineering

Optimization Techniques

01ST1109 (PEC)

Objective of the Course:

- To impart knowledge about the optimization
- To study the different optimization methodologies applied to structural systems

Credit Earned: 3

Students learning outcomes:

After successful completion of the course, it is expected that student will be able to,

- 1. Understand structural optimization problems.
- 2. Apply various classical techniques for optimization.
- 3. Identify problem formulation form constrained and unconstrained nonlinear programming for optimization problem.
- 4. Apply optimization techniques to structural steel and concrete elements.

Teaching and Examination Scheme

Teaching Scheme (Hours)				Theory Marks			Tutorial/ Practical Marks		Tatal
Theory	Tutorial	Practical	Credits	ESE (E)	CS E (I)	IA (M)	Viva (V)	Term Work (TW)	Marks
03	00	00	03	50	20	30	25	25	150

Detailed Syllabus

Sr	Title of the unit				
No.	The of the unit				
1	Introduction	06			
	Basic Engineering Analysis and Design, Engineering application of				
	optimization, classification of optimization, Variables, Need for optimal				
	design, Local and global optima, Feasible and infeasible solution,				
	Formulation of structural optimization problems.				
2	Classical Technique	08			
	Differential Calculus, Optimality criteria, Single variable optimization,				
	Multivariable optimization with and without constrains, Lagrange				
	Multiplier method, Kuhn -Tucker Criteria, Variation Principle				

Structural Engineering

3	Linear and Non-Linear Programming				
	Standard Form of Linear Programming, Problem formulation, Graphical				
	solution, Analytical method, Simplex method, Two phase method,				
	Elimination method, Constrained and Unconstrained optimization				
	problems, Direct and indirect method, Method of feasible direction,				
	Penalty function method				
4	Structural Engineering Applications				
	Methods for optimal design of structural elements, continuous beams and				
	single storied frames using plastic theory, Minimum weight design for				
	truss members, Optimization principles to design R.C. structures such as				
	multi-storey buildings, water tanks and bridges. Structural optimization				
	for transient (dynamic) problems				
		42			

Suggested Theory Distribution

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation							
Remember	Understand	Apply	Analyze	Evaluate	Create		
5%	5%	20%	25%	25%	20%		

Instructional Method and Pedagogy:

- 1. Use of Learning Management system like canvas
- 2. Demonstration through presentations on power point and videos and lectures
- 3. Brainstorming and group discussion sessions
- 4. Collaborative learning

Recommended Study Material:

Reference Book:

1. Rao, S.S, "Engineering Optimization: Theory and Practice", New Age International, New

2. K. Deb, "Optimization for engineering design: Algorithms and example", PHI Pvt Ltd

3. J.S. Arora, Introduction to optimum design, McGraw Hill International editions.

4. E R.T. Hafta and Z. Gurdal, "Elements of structural optimization", Kluwer academic publishers

5. Andrej Cherkaev, Variational Methods for Structural Optimization, Vol.140, Springer Science.