

Syllabus for Master of Technology

Structural Engineering

Design of Tall Structure 01ST1209 (PEC)

Objective of the Course: Objectives of introducing this subject at first year level in Masters of civil engineering are:

- To understand the various structural systems for high rise structures.
- To evaluate the behavior of structure under dynamic loading.
- To analyse and design of advanced structures.
- To apply the advanced method of analysis of such structures and modelling these structures in various software with pros and cons.

Credit Earned: 3

Students learning outcomes:

After successful completion of the course, it is expected that student will be able to

- 1. Understand the behaviour of tall structures under different loading conditions
- 2. Use computational software for analysis and design of high-rise structures.
- 3. Apply code provisions for tall structures.
- 4. Choose & apply appropriate structural systems for different size & height of structure.

Teaching and Examination Scheme

Teaching Scheme (Hours)			Credits	Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE (E)	CSE (I)	IA (M)	Viva (V)	Term Work (TW)	Marks
03	00	00	03	50	20	30	25	25	150

Detailed Syllabus

Sr No.	Title of the unit				
1	Tall Buildings	20			
	General Consideration for Design of Tall Structures				
	Requirements of Tall Buildings, Factors affecting Tall Structures,				
	Structural Concept.				
	Design Criteria & Loadings for Tall Buildings				
	Design Philosophy, National & International Code Provisions for				
	Loading, Strength & Stability, Stiffness & Drift Limitations, Effects of				
	Creep, Shrinkage, Temperature, Fire etc., Human Comfort Criteria.				

Structural Engineering

	Gravity Load, Live Load Reduction, Construction Load, Wind Load-					
	Static & Dynamic Methods, Earthquake Load-Concept & Procedure of Equivalent Lateral Load, Response Spectrum & Modal Analysis, Load					
	Combinations.					
	Structural Forms & Systems:					
	Concrete Structures-					
	Rigid Frame, Braced Frame, Infilled Frame, Flat Plate-Slab, Shear Wall,					
	Coupled Shear Wall, Flat Slab with Shear Wall, Shear Wall Frame					
	Interaction, Framed Tube Structural System, Core Supported Structures, Outrigger, Belt Truss, Buttress Core System for Tall Building. Various					
	Floor Systems.					
	Steel Structures-					
	Rigid Frame, Semi-Rigid Frame, Braced Frame, Eccentric Braced					
	Frame System, Buckling Restrained Brace Frame, Steel Plate Shear					
	Wall, Interacting System of Braced and Rigid Frame, Staggered Truss					
	System, Core Outrigger & Belt Truss System, Framed Tube System, Bundled Tube Various Floor Systems					
	Bundled Tube. Various Floor Systems. Composite Structure					
	Various Composite Members, Composite Subsystems like Ordinary &					
	Special Moment Frames, Composite Braced Frame, Composite					
	Eccentric Braced Frame, Composite Tube Systems, Vertically Mix					
	Systems. Various Floor Systems.	0.6				
2	Dynamic Response of Tall Structures Due to Wind & Earthquake	06				
	Wind Load - Sensitivity of structures to wind forces, Characteristics of Wind, Code Provisions, Dynamic structural response due to wind forces,					
	along wind Response, Cross wind response, Introduction to Wind					
	Tunnel Engineering, worked examples,					
	Earthquake Load – Behaviour of Tall Buildings under Earthquakes,					
	Design Philosophy, Structural Damping, Static & Dynamic Approach of					
	Earthquake Analysis of Buildings, Empirical relations for fundamental					
	natural frequency, Modal Analysis & it's Interpretation. Comfort criteria: Human perception of building motion, perception					
	thresholds, Use of comfort criteria in design					
3	Modeling of Tall Structures for Analysis & Design	16				
	Different Approach of Analysis, Assumptions & Behaviour, Modelling					
	for Approximate Analysis- Modelling of Slabs, Continuum Analysis,					
	Modeling for Exact Analysis of Plane Frame, Plane Shear Wall, 3-D					
	Frame & Wall Structures, P-Delta Effects, Wall Opening Effect.					
	Braced Frame -Types, Behaviour, Method of Analysis & Drift Estimation.					
	Rigid Frame - Behaviour, Approximate Analysis of member Forces by					
	Gravity and Lateral Loads, Drift Estimation. Computer Analysis of					
	Rigid Frame.					
	Shear Wall & Coupled Shear Wall – Behaviors, Method of Analysis.					
	Modelling, Analysis & Design of Tall Structures with different					
	configuration in Commercially Available Software.					

Structural Engineering

Suggested Theory Distribution

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation							
Remember	Understand	Apply	Analyze	Evaluate	Create		
5%	5%	20%	25%	25%	20%		

Recommended Study Material:

Reference Book:

- 1. Structural Design of Multi-storeyed Buildings, Varyani U. H., 2nd Ed., South Asian Publishers, New Delhi.
- Design of Multi Storeyed Buildings, Vol. 1 & 2, CPWD Publications. Hel wany, S. (2007).
- 3. Advanced Reinforced Concrete Design, Varghese P. C., Prentice Hall of India, New Delhi.
- 4. Advanced Design of Concrete Structures KrishanaRaju N., Tata Mc-Graw Hill, Delhi.
- 5. Tall Building Structures, Smith Byran S. and Coull Alex, Wiley India
- 6. Tall Building Structures on Elastic Subgrade and Research of Semi-Analytical method by Gong Yaoqing. Beijing: Tsinghua University
- 7. Tall Chimneys, Manohar S. N., Tata McGraw Hill Publishing Company, New Delhi
- 8. Structural Design of Multi-storeyed Buildings, Varyani U. H., 2nd Ed., South Asian Publishers, New Delhi.
- 9. High Rise Building Structures, Wolfgang Schueller, Wiley
- 10. Advanced Reinforced Concrete, Varghese A. V., Prentice Hall of India.
- 11. Unified Theory of Concrete Structures, Hsu T. T. C. and Mo Y. L., John Wiley & Sons, 2010.
- 12. IS Codes: IS:456, IS:875, IS:1893, IS:4326, IS:13920, IS: 3370, IS: 4995 (I & II), SP:16, SP:34.
