

Syllabus for Master of Technology

Structural Engineering

Advanced Design of Foundation 01ST1211 (PEC)

Objective of the Course: Objectives of introducing this subject at first year level in Masters of structural engineering are:

- Gain knowledge of about advanced topics of foundation design and analyses, supplementing their comprehensive knowledge acquired in basic foundation engineering course.
- Develop understanding of choice of foundation design parameters.
- Learn about cause and effect of dynamic loads on foundation.

Credit Earned: 3

Students learning outcomes:

After successful completion of the course, it is expected that student will be able to

- 1. Estimate the size of isolated and combined foundations to satisfy bearing capacity and settlement criteria.
- 2. Determine the load carrying capacity and settlement of single piles and pile groups.
- 3. State analysis and design principles of well foundation, drilled piers and caissons.
- 4. Apply principles for analysis and design of machine foundations.

Teaching and Examination Scheme

Teaching Scheme (Hours)			Con dita	Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE (E)	CSE (I)	Internal (M)	Viva (V)	Term Work (TW)	Marks
03	00	00	03	50	20	30	25	25	150

Detailed Syllabus

Sr	Title of the unit			
No.				
1	Subsurface exploration	04		
	Boring, Sampling, SPT, CPT, Geophysical methods, Bore log and soil			
	report.			
2	Shallow Foundations, Design of Combined and Raft foundations			
	Terzaghi's, Meyerhoff, Hansens bearing capacity theories, based on SPT,			
	layered soils, eccentric and inclined loads. Bearing capacity on slopes,			
	Foundation settlements, Design of combined footings by Conventional			
	and elastic line methods			

Syllabus for Master of Technology

Structural Engineering

3	Design of Retaining walls, Sheet Pile Walls, Braced Cuts			
	Lateral earth pressure, Retaining wall stability, Cantilever and Anchored			
	sheet pile walls, Pressure envelopes and design of various components			
4	Pile Foundations	08		
	Load transfer mechanism, Pile capacity in various soil types, negative			
	skin friction, group action, settlements, laterally loaded vertical piles			
4	Machine Foundations			
	Free and forced vibration with and without damping, Elastic half space			
	for rigid footings. Vibration analysis of foundations subjected to vertical,			
	sliding and rocking modes, Design criteria for machine foundations			

Suggested Theory Distribution

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation							
Remember	Understand	Apply	Analyze	Evaluate	Create		
5%	5%	20%	25%	25%	20%		

Instructional Method and Pedagogy:

- 1. Use of Learning Management system like canvas
- 2. Demonstration through ppt and videos and lectures
- 3. Brainstorming and group discussion sessions
- 4. Collaborative learning

Recommended Study Material:

Reference Book:

- 1. Bowles J.E., Foundation Analysis and Design, McGraw Hill Pub. Co. New York.
- 2. Swami Saran, Analysis and Design of Substructures, Oxford & IBH Pub. Co. Pvt. Ltd.. India
- 3. R.B. Peck, W.E. Hanson & T.H. Thornburn, Foundation Engineering, Wiley Eastern Ltd., India
- 4. Braja, M. Das, Principles of Geotechnical Engineering, Cengage Learning, India
- **5.** Bureau of Indian Standards: IS-1904, IS-6403, IS-8009, IS-2950, IS-2911 and all other relevant codes.