

Master of Technology

Structural Engineering

Design of Fiber Reinforced Composite Structures 01ST1214 (PEC)

Objective of the Course:

- To understand the behavior on the characteristics, relative amounts, geometry/distribution, and properties of the constituent phases.
- To acquaint about various types of reinforced composites.

Credit Earned: 3

Students learning outcomes:

After successful completion of the course it is expected that student will be able to,

- 1. Cite the difference in strengthening mechanism for large-particle and dispersionstrengthened particle-reinforced composites
- 2. Distinguish the three different types of fibre reinforced composites on the basis of fibre length and orientation; comment on the distinctive mechanical characteristics for each type.
- 3. Determine longitudinal modulus and longitudinal strength for an aligned and continuous fibre reinforced composite.
- 4. Name and briefly describe the subclassifications of structural composites.

Teaching and Examination Scheme

Teaching Scheme (Hours)			C - 1'4	Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE (E)	IA (M)	CSE (I)	Viva (V)	Term Work (TW)	Marks
03	00	00	03	50	30	20	25	25	150

Detailed Syllabus

Sr No.	Title of the unit	Number of hours		
1	Introduction	10		
	Type of structural fibers, Particle reinforced composites, Dispersion- strengthened composites, Influence of fiber orientation and concentration			
2	Phases of composites			
	Reinforcements: Glass Fibers, Boron Fibers, Carbon Fibers, Organic Fibers, Ceramic Fibers, Whiskers; Matrix Materials: Polymers, Metals			

Master of Technology

Structural Engineering

3	Reinforced Composites	18	
	Glass Fiber-Reinforced Polymer (GFRP) Composites, Carbon Fiber-		
	Reinforced Polymer (CFRP) Composites, Aramid Fiber-Reinforced		
	Polymer Composites, Other Fiber Reinforcement Materials, Hybrid		
	composites		
		42	

Suggested Theory Distribution

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation							
Remember	Understand	Apply	Analyze	Evaluate	Create		
5%	5%	20%	25%	25%	20%		

Instructional Method and Pedagogy:

- 1. Use of Learning Management system like canvas
- 2. Demonstration through presentations on power point and videos and lectures
- 3. Brainstorming and group discussion sessions
- 4. Collaborative learning

Recommended Study Material:

Reference Book:

- 1. Agarwal, B. D. and L. J. Broutman, Analysis and Performance of Fiber Composites, 2nd edition, Wiley, New York, 1990
- 2. Ashbee, K. H., Fundamental Principles of Fiber Reinforced Composites, 2nd edition, Technomic Publishing Company, Lancaster, PA, 1993.
- 3. Chawla, K. K., Composite Materials Science and Engineering, 2nd edition, Springer-Verlag, New York, 1998.
- 4. Hollaway, L. (Editor), Handbook of Polymer Composites for Engineers, Technomic Publishing Company, Lancaster, PA, 1994.
- 5. Mallick, P. K., Fiber-Reinforced Composites, Materials, Manufacturing, and Design, 2nd edition, Marcel Dekker, New York, 1993.