

## **Structural Engineering**

## Advanced Concrete Design 01ST2101 (PCC)

**Objective of the Course:** Objectives of introducing this subject at first year level in Masters of civil engineering are:

- Impart the fundamental knowledge and skill pertaining to designing the Reinforced concrete special structures such as silos, flat slabs, grid floors, deep beams, liquid retaining and storage structures.
- Imbibe the design steps according to relevant Indian standard code of practice for design of the various structures.

## **Credit Earned: 4**

#### **Students learning outcomes:**

After successful completion of the course, it is expected that student will be able to

- 1. Check and ensure the serviceability criteria for reinforced concrete structural elements.
- 2. Design various RC structural elements using Limit State method (LSM).
- 3. Design water retaining and storage structures using IS codal provisions.
- 4. Prepare structural detailing of various RC structural members as per IS Code provisions.

| Teaching Scheme<br>(Hours) |          |           | Credits | Theory Marks |            |           | Tutorial/<br>Practical<br>Marks |                      | Total |
|----------------------------|----------|-----------|---------|--------------|------------|-----------|---------------------------------|----------------------|-------|
| Theory                     | Tutorial | Practical | Credits | ESE<br>(E)   | CSE<br>(I) | IA<br>(M) | Viva<br>(V)                     | Term<br>Work<br>(TW) | Marks |
| 04                         | 00       | 00        | 04      | 50           | 20         | 30        | 25                              | 25                   | 150   |

## **Teaching and Examination Scheme**

#### **Detailed Syllabus**

| Sr  | Title of the unit                                              | Number   |  |  |  |  |  |
|-----|----------------------------------------------------------------|----------|--|--|--|--|--|
| No. |                                                                | of hours |  |  |  |  |  |
| 1   | Introduction                                                   | 04       |  |  |  |  |  |
|     | Basic Concept of Design                                        |          |  |  |  |  |  |
|     | Materials Properties, Design Philosophy of Reinforced Concrete |          |  |  |  |  |  |
|     | Design, Partial Safety Factors & Loads and Load Combinations.  |          |  |  |  |  |  |



## **Structural Engineering**

|   | Serviceability Criteria for Design of RC Members                        |  |  |  |
|---|-------------------------------------------------------------------------|--|--|--|
|   | Serviceability Limit States-Short & Long-Term Deflections due to        |  |  |  |
|   | Shrinkage and Creep; Serviceability Limit States of Cracking-Cracking   |  |  |  |
|   | Width Calculations.                                                     |  |  |  |
| 2 | Design of Column, Shear Wall, Deep Beams & Corbels                      |  |  |  |
|   | Design of Column with Biaxial Moments, Design of Slender Columns.       |  |  |  |
|   | Shear wall Design, using compression theory design for shear, torsional |  |  |  |
|   | design.                                                                 |  |  |  |
|   | Introduction & IS Code Provisions for Design of Deep Beams,             |  |  |  |
|   | Procedure of Designing Deep Beams, Design as per IS 456, Checking       |  |  |  |
|   | for Local Failures, Detailing of Deep Beams. Design of Corbels.         |  |  |  |
| 3 | Design of Flat Slab, Grid Floors & Foundations                          |  |  |  |
|   | Analysis & Design of Flat Slab Using Direct Design Method               |  |  |  |
|   | Concept of Flat Slab & Behavior, IS Code Provisions for Design of Flat  |  |  |  |
|   | Slab, Distribution of Moments in Column & Middle Strips; Distribution   |  |  |  |
|   | of Moments & Shears from Flat Slabs to Columns, Design of Slabs         |  |  |  |
|   | using Direct Design Method & Check for Shear Failure, Detailing of      |  |  |  |
| 1 | Flat slab, Limitations of Direct Design Method.                         |  |  |  |
|   | Analysis & Design of Grid Floors                                        |  |  |  |
|   | Concept & IS Code Provisions of Grid Floors, Different Techniques for   |  |  |  |
|   | Design of Grid Floors, Design of Grid Floor by IS code Method,          |  |  |  |
|   | Rankine Grashoff Method & Equivalent Plate Theory.                      |  |  |  |
|   | Analysis & Design of Foundations                                        |  |  |  |
|   | Basics of Foundation Design, IS Code Provisions, Types & Suitability    |  |  |  |
|   | of Different Types of Foundations, Design of Eccentric Isolated         |  |  |  |
|   | Column Footing, Design of Combined Footing, Design of Strap & Strip     |  |  |  |
|   | Footing, Design of Raft Foundations, Design of Pile Cap.                |  |  |  |
| 4 | Design of Water Retaining & Storage Structures                          |  |  |  |
|   | Types of Water Retaining & Storage Structures, IS Code Provisions,      |  |  |  |
|   | Design of Intze Type Shaft Supported Water Tanks, Design of Storage     |  |  |  |
|   | Structures like Bunker & Silo.                                          |  |  |  |



## **Structural Engineering**

### Suggested Theory Distribution

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process.

| Distribution of Theory for course delivery and evaluation |            |       |         |          |        |  |  |  |
|-----------------------------------------------------------|------------|-------|---------|----------|--------|--|--|--|
| Remember                                                  | Understand | Apply | Analyze | Evaluate | Create |  |  |  |
| 5%                                                        | 5%         | 20%   | 25%     | 25%      | 20%    |  |  |  |

## Instructional Method and Pedagogy:

- 1. Use of Learning Management system like canvas
- 2. Demonstration through ppt and videos and lectures
- 3. Brainstorming and group discussion sessions
- 4. Collaborative learning

#### **Recommended Study Material:**

#### **Reference Book:**

- 1. Krishna Raju N., Advanced Design of Concrete Structures –Tata Mc-Graw Hill, Delhi.
- 2. Sinha S. N., Reinforced Concrete Design Tata Mc-Graw Hill, Delhi.
- 3. Jain A. K., Limit State Design of Reinforced Concrete -Nemchand & Bros., Roorkee.
- 4. Subramanian N., Design of Reinforced Concrete Structures-2013, Oxford University Press, New Delhi.
- 5. Varghese A. V., Advanced Reinforced Concrete, Prentice Hall of India.
- 6. Shah H. J., Reinforced concrete, Vol I and II Charotar Pub., Anand.
- 7. Shah and Karve, Design of Multi-storied Building (G+3) Structure Pub., Pune.
- 8. Pillai S. U. and MenonD., Reinforced Concrete Design, Tata McGraw-Hill, 3<sup>rd</sup> Ed, 1999.
- 9. Park R. and PaulayT., Reinforced Concrete Structures, John Wiley & Sons, 1995.
- 10. Varghese P. C., Advanced Reinforced Concrete Design, Prentice Hall of India, New Delhi.
- 11. Hsu T. T. C. and Mo Y. L., Unified Theory of Concrete Structures, John Wiley & Sons, 2010.
- 12. IS Codes: IS:456, IS:875, IS:1893, IS:4326, IS:13920, IS: 3370, IS: 4995 (I & II), SP:16, SP:34.



## **Structural Engineering**

### Web Resources

Design of Reinforced Concrete Structures NPTEL Course (Video): https://nptel.ac.in/courses/105/105105105/

## Design of Concrete Structures NPTEL Course (Web):

https://nptel.ac.in/courses/105/105/105105104/

\*\*\*