

Master of Technology Structural Engineering

Structural Dynamics 01ST2202 (PCC)

Objective of the Course: Objectives of introducing this subject at first year level in Masters of structural engineering are:

- To understand the basics of structural dynamics for seismic analysis of structures
- To understand the behavior of the structure subjected to earthquake forces.

Credit Earned: 3

Students learning outcomes:

After successful completion of the course, it is expected that student will be able to,

- 1. Formulate the mathematic modelling & equations of motions for SDOF & MDOF systems.
- 2. Identify the response of SDOF structures using various approach.
- 3. Evaluate the response of MDOF structures using various approach.
- 4. Identify the suitable structural control systems.

Teaching Scheme (Hours)			Cradita	Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE (E)	CSE (I)	IA (M)	Viva (V)	Term Work (TW)	Marks
03	00	00	03	50	20	30	25	25	150

Teaching and Examination Scheme

Detailed Syllabus

Sr No.	Title of the unit				
1	Response of Single Degree of Freedom System				
	Introduction to Structural Dynamics, Application of Structural Dynamics Mathematical Modelling of SDOE & MDOE structures Free				
	& Forced Vibration Response of SDOF; Concept of Damping &				
	Various Types of Damping; Free & Forced Damped Vibration				
	Response of SDOF; Response of SDOF system to general dynamic loading using Duhamel's Integration, Numerical Techniques for SDOF				
	subjected to general dynamic loading. Introduction to Nonlinear				
	Response of Structures.				

🗑 Marwadi

Master of Technology Structural Engineering

2	Response of Multi-Degree of Freedom System				
	Equation of Motion of Symmetrical & Unsymmetrical MDOF System,				
	Mode Shapes & Natural Frequency of MDOF System, Orthogonality of				
	Mode Shapes; Normalization of Mode Shapes, Numerical Techniques				
	for determination of Natural Frequencies, Derivation of Damping				
	Matrix, Modal Damping Matrix & Rayleigh's Damping Matrix,				
	Dynamic Response using Modal Superposition Technique, Free &				
	Forced Vibration of MDOF, Concept of Response Spectrum Analysis;				
	Response Spectrum Analysis of MDOF as per IS Standard. Concept of				
	Generalized SDOF System.				
3	Recent Advancement in Structural Dynamics	06			
	Active & Passive Controls systems & Their Suitability;				
	Base isolations – Principles, Types, Design Consideration, Feasibility.				
	Dampers - Principles, Types, Design Consideration, Feasibility.				
	Active, Semi-active & Hybrid Control Systems Application of structural				
	control systems.				
	Dynamics effects of wind loading, Introduction of Blast Loading and				
	Pile driving, Foundations for industrial machinery.				

Suggested Theory Distribution

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation							
Remember	Understand	Apply	Analyze	Evaluate	Create		
5%	5%	20%	25%	25%	20%		

Instructional Method and Pedagogy:

- 1. Use of Learning Management system like canvas
- 2. Demonstration through ppt and videos and lectures
- 3. Brainstorming and group discussion sessions
- 4. Collaborative learning

Recommended Study Material:

Reference Book:

- 1. A.K. Chopra; Dynamics of structures, Pearson, New Delhi.
- 2. Clough & Penzin; Dynamics of structures.
- 3. Biggs, J. M. "Introduction to structural dynamics." Edition, McGraw Hill, New York, NY.
- 4. Craig, Roy R., and Andrew J. Kurdila. "Fundamentals of structural dynamics." John Wiley & Sons, 2006
- 5. S S Rao; Mechanical Vibration; Pearson, New Delhi
- 6. Manish Shrikhande & Pankaj Agrawal; Earthquake resistant design of structures, PHI Publication, New Delhi

Master of Technology Structural Engineering

- 7. S.K. Duggal; Earthquake resistance design of structures; Oxford University Press, New Delhi.
- 8. Park & Pauly; Behaviour of RC structure
- 9. C V R Murthy Earthquake Tips, NICEE
- 10. IITK-GSDMA EQ26 V -3.0 Design Example of a Six Storey Building.

MOOC Courses:

- 1. Structural Dynamics-NPTEL Course https://nptel.ac.in/courses/105/106/105106151/
- 2. Structural Dynamics-NPTEL Course https://nptel.ac.in/courses/105/101/105101006/
- 3. Dynamics of Structures-NPTEL Course https://nptel.ac.in/courses/105/101/105101209/
- 4. Structural Dynamics for Civil Engineers https://nptel.ac.in/courses/105/104/105104189/

Web Resource

- 1. https://www.nicee.org/EQTips.php
- 2. https://www.nicee.org
- 3. https://www.eeri.org
- 4. https://www.gsdma.org
- 5. https://www.ndma.gov.in
- 6. https://www.nptel.iitm.ac.in/courses
