

Syllabus for Bachelor of Technology

Chemical Engineering

Subject Code: 01CH0408 Subject Name: Energy Technology B.Tech. Year – II (Semester IV)

Objective: This course helps the students to provide the knowledge of different types of energy and their utilization techniques.

Credits Earned: 3 Credits

Course Outcomes: After completion of this course, student will be able to:

- 1. Understand the science behind the energy produced from different sources.
- 2. Analyze the advantages and limitation of solar and wind energy
- 3. Suggest new upcoming renewable energy sources as per industrial requirement.
- 4. Utilize the renewable energy in problem solving where conventional energy are not fruitful

Pre-requisite of course: None

Teaching and Examination Scheme

Teaching Scheme (Hours)				Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE (E)	IA (I)	CSE (C)	Viva (V)	Term work (TW)	Marks
3	0	0	3	50	30	20	0	0	100

Contents:

Unit	Topics	Contact Hours				
1	An Introduction to Energy Sources:					
	Energy sources, primary & secondary energy sources, national energy strategy					
	& plan, energy management, Proximate & ultimate analysis, calorific values,					
	rank of coal, coking & caking.					
2	Solar Energy					
	Solar radiation, measurement of solar radiation, solar energy collectors – flat					
	plate collector, air collector, collectors with porous absorbers, concentrating					
	collectors, applications & advantages of various collectors, selective absorber					
	coatings, solar energy storage systems (thermal, electrical, chemical &					
	mechanical), applications.					
3	Wind Energy					
	Basic principles, power in wind, wind energy conversion, basic components of					
	wind energy conversion systems (WECS), classification of WECS, wind					
	energy collectors, applications of wind energy.					
4	Hydrogen and Fuel Cell					
	Properties of Hydrogen, production and application of hydrogen,					
	thermochemical methods, solar methods, storage& transportation, safety &					
	management, hydrogen – oxygen fuel cell, ion exchange membrane cell, fossil					
	fuel cell, molten carbonate cell, conversion efficiency, applications of fuel					
	cells					
	Total Hours	38				

Marwadi UNIVERSITY

Syllabus for Bachelor of Technology

Chemical Engineering

References:

- 1. "Fuels & combustion", Samir Sarkar, Orient Longmans, 1974.
- 2. "Solar Energy: Principles of Thermal Collection and Storage", K. Sukhatme, Suhas P. Sukhatme, Tata McGraw Hill Education, New Delhi, 2009.
- 3. "Energy Technology (Non Conventional, Renewable and Conventional)", Sunil S. Rao and B.B. Parulekar, Khanna Publisher, 1994.
- 4. "Non Conventional Energy Sources", G. D. Rai, Khanna Publisher, New Delhi, 1988.

Suggested Theory distribution:

The suggested theory distribution as per Bloom's taxonomy is as follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation								
Remember	Understand	Apply	Analyze	Evaluate	Create			
20%	35%	25%	20%	-	-			

Instructional Method:

- a. The course delivery method will depend upon the requirement of content and need of students. The teacher in addition to conventional teaching method by black board, may also use any of tools such as demonstration, role play, Quiz, brainstorming, MOOCs etc.
- b. The internal evaluation will be done on the basis of continuous evaluation of students in the laboratory and class-room.
- c. Practical examination will be conducted at the end of semester for evaluation of performance of students in laboratory.
- d. Students will use supplementary resources such as online videos, NPTEL videos, e-courses, Virtual Laboratory

Design Based Problems (DP)/ Open Ended project (OEP):

In the beginning of the session, subject faculty will allot an OEP / DP to the students. Students will be free to choose a topic of their choice which will be relevant to the syllabus and they will either prepare a working model/ report / presentation / poster on their topic.

Web Resources:

- a. https://nptel.ac.in/courses/121106014
- b. https://nptel.ac.in/courses/115103123
- c. https://www.coursera.org/learn/renewable-energy-technology-fundamentals