Syllabus for Bachelor of Technology

Chemical Engineering

Subject Code: 01CH0409 Subject Name: Introduction to Membrane Technology B.Tech. Year – II (Semester IV)

Objective: This course helps the students to obtain knowledge on membrane-based separation processes.

Credits Earned: 3 Credits

Course Outcomes: After completion of this course, student will be able to:

- 1. Understand the basic phenomena of membrane technology.
- 2. Understand the working and application of reverse osmosis, ultra-filtration and nano filtration.
- 3. Compare the types of membrane reactors.
- 4. Evaluating the best suitable membrane process as per process requirement.

Pre-requisite of course:

Teach	ing Scheme		Theory Marks			Tutorial/ Practical						
							Marks		Total			
			Credits	ESE	IA	CSE	Viva	Term work	Marks			
Theory	Tutorial	Practical		(E)	(I)	(C)	(V)	(TW)				
3	0	0	3	50	30	20	0	0	100			

Teaching and Examination Scheme

Contents:

Unit	Topics	Contact
		Hours
1	Introduction To Membrane Technology:	
	Water shortages and need for membrane technology, Principles, mechanisms, types	
	of the membrane, cross flow, membrane materials and various membrane modules	8
	used in membrane separation processes, Classification, application & advantages of	
	membrane separation processes.	
2	MEMBRANE TRANSPORT THEORY	
	Introduction, Solution-diffusion Model, Structure-Permeability Relationships in	10
	Solution-diffusion Membranes, Pore-flow Membranes,	
3	Reverse Osmosis, Ultra-filtration and Nano filtration	
	Concept of osmosis and reverse osmosis, Advantages and commercial applications of	10
	Reverse Osmosis, Concept & working principal ultrafiltration & microfiltration and	10
	their commercial application	
4	Membrane Reactor:	
	Concept & working, Various modules of membrane used for membrane reactor,	8
	Advantages & Disadvantages	
	Total Hours	36

References:

- 1. "Membrane separation Processes", Kaushik Nath, PHI Pvt. Ltd., 2008.
- 2. "Introduction to process Engineering & Design" S.B. Thakore & B.I. Bhatt, Tata McGraw-Hill Ltd., 2007.
- 3. "Principles of Mass transfer & Separation Processes", Binary K. Dutta, PHI Publication, 3rd edition, 2007.

Chemical Engineering

Suggested Theory distribution:

The suggested theory distribution as per Bloom's taxonomy is as follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation							
Remember	Understand	Apply	Analyze	Evaluate	Create		
20%	35%	25%	20%	-	-		

Instructional Method:

- a. The course delivery method will depend upon the requirement of content and need of students. The teacher in addition to conventional teaching method by black board, may also use any of tools such as demonstration, role play, Quiz, brainstorming, MOOCs etc.
- b. The internal evaluation will be done on the basis of continuous evaluation of students in the laboratory and class-room.
- c. Practical examination will be conducted at the end of semester for evaluation of performance of students in laboratory.
- d. Students will use supplementary resources such as online videos, NPTEL videos, e-courses, Virtual Laboratory

Design Based Problems (DP)/ Open Ended project (OEP) :

In the beginning of the session, subject faculty will allot an OEP / DP to the students. Students will be free to choose a topic of their choice which will be relevant to the syllabus and they will either prepare a working model/ report / presentation / poster on their topic.

Web Resources:

- a. <u>https://www.coursera.org/lecture/industrial-biotech/membrane-processes-in-industrial-biotechnology-fySmD</u>
- b. https://nptel.ac.in/courses/103103163