Bachelor of Technology

Civil Engineering

Advanced Geotechnical Engineering 01CI1510

Objective of the Course:

- To carry out laboratory compaction and in-place density tests for fill quality control.
- To determine shear strength of soil for geotechnical purpose.
- To understand and determine the stability failure of slopes and importance of earth pressure.
- To understand and determine the permeability of soil.

Credit Earned: 04

Prerequisite: Basics of Geology & Geotechnical Engineering

Student's learning outcomes:

After successful completion of the course, it is expected that students will be able to,

- 1. Evaluate to predict the stresses incurred on the soil due to overlaying of foundations
- 2. Predict stability of the slope and Design of slopes that are required in the construction of embankments, earth dams, and canals can be successfully applied
- 3. Understand the phenomena of compaction & consolidation, also be able to calculate the settlement of the foundation.
- 4. Calculate the strength, Earth pressure, and permeability parameters of soil as per relevant IS code and phenomena of earth pressure.

Teaching Scheme (Hours)			Cualita	Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE (E)	IA (M)	CSE (I)	Viva (V)	Term Work (TW)	Marks
03	00	02	04	50	30	20	25	25	150

Teaching and Examination Scheme

Detailed Syllabus

Sr No.	Title of the Unit			
1	Compaction			
	Definition, theory of compaction, Light and Heavy Proctor Compaction	02		
	Test, factors affecting compaction in the field.			

Bachelor of Technology

Civil Engineering

	Effect of compaction on soil properties. Zero Percent Air Void Line				
	Placement water content Placement layer thickness field control of				
	compaction.				
2	Consolidation				
<u> </u>	Compressibility of Soils Definition and Mechanism of Soil	07			
	Consolidation Terzaghi's Spring Analogy	02			
	Consolidation, Terzagni s Spring Analogy				
	Compression Index, Coefficient of Compressibility, Coefficient of volume change. Derivation of Terazagi's One-Dimensional				
	Consolidation Equation. Time factor and consolidation ratio.				
	Calculation of consolidation settlement for uniform pressure increment	ement 03			
	in the clay layer. One Dimensional consolidation test.	02			
3	Shearing Resistance and Strength	06			
	Mohr's strength theory, Mohr-Coulomb strength theory, Modified	02			
	Mohr-Coulomb strength theory, Types of tri-axial tests-UU, CU, CD.	03			
	Direct shear test, Unconfined compression test, Vane shear Test,	02			
	Effective Stress principle.	03			
4	Stability of Slopes	06			
	Idealized Condition used in the analysis, factor of safety, Infinite and	0.2			
	finite slopes, Stability of Infinite slopes.	02			
	Introduction to Swedish Circle Method of Analysis, Taylor's Stability	02			
	Number.	02			
	Slopes stability analysis using Swedish circle method, Bishop's method.	02			
5	Earth Pressure	05			
	Types of lateral earth pressure, Rankine's and Coulomb's earth				
	pressure. Theory, and their application for determination of lateral earth	02			
	pressure under different conditions.				
	Rebhann's and Culmann's Graphical methods of determination of				
	lateral earth pressures.	03			
6	Stress Distribution of Soils	07			
	Causes of stress in soil, geostatic stress, Boussinesque's equation, stress	0.7			
	distribution diagrams.	03			
	New-mark's influence chart Westergard's equation, stresses due to				
	circular and rectangular loadings.	04			
7	Permeability and Seepage	06			
	Darcy's Law and its validity, factors affecting permeability, Constant	^ ^			
	head and Falling Head Permeability Test	03			
	Permeability of stratified soil masses, Seepage pressure, Ouicksand				
	condition, Flow Net and its characteristics.				
	Total	42			

Civil Engineering

List of Experiments

Sr.	Topic Name			
No.				
1	Standard Proctor Compaction Test			
2	Modified Proctor Compaction Test			
3	Consolidation Test			
4	Direct Shear Test			
5	Demonstration on Triaxial Test - CD Test			
6	Demonstration on Triaxial Test - CU Test			
7	Demonstration on Triaxial Test – UU Test			
8	Unconfined Compression Test			
9	Free Swell			
10	Swelling Pressure Test			
11	Falling Head Permeability Test			
12	Constant Head Permeability Test			

Suggested Theory Distribution

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve an effective teaching-learning process

Distribution of Theory for course delivery and evaluation						
Remember	Understand	Apply	Analyze	Evaluate	Create	
20%	20%	20%	25%	15%	00%	

Instructional Method and Pedagogy:

- 1. Prerequisite of the course and its pattern shall be discussed on the commencement of the course.
- 2. Lectures shall be conducted in classroom using various teaching aids.
- 3. Presence in all academic sessions is mandatory which shall carry 5% marks of the total internal evaluation.
- 4. At the end of each unit/topic an assignment based on the course content shall be given to the students which shall carry 5% weightage for timely completion and submission of the assigned work.
- 5. The laboratory experiments are planned in such a way that it covers the practical aspects of the course contents. The performance of these experiments shall bring the clarity of the theoretical concepts which the students have studied during the academic sessions.

Bachelor of Technology

Civil Engineering

Recommended Study Material

- 1. Soil Mechanics & Foundation Engineering by B.C. Punmia; Laxmi Pub. Pvt. Ltd.
- 2. Soil Mechanics & Foundation Engineering by K. R. Arora; Standard Publication
- 3. Soil Mechanics & Foundation Engineering by P. Purushothama Raj; Pearson Publication
- 4. Fundamentals of Soil Mechanics by D. W. Taylor; Asia Publishing House
- 5. Principles of Geotechnical Engineering by B. M. Das; Thomson Asia Pvt. Ltd.