

INSTITUTE	FACULTY OF SCIENCE
PROGRAM	BACHELOR OF SCIENCE (CHEMISTRY)
SEMESTER	4
COURSE TITLE	FUNDAMENTAL CHEMISTRY –IV
COURSE CODE	02CY0252
COURSE CREDITS	6

Objective:

- 1 To study basics of the name reaction and the rearrangement.
- 2 To understand and preparation and reactions of the heterocyclic compounds of 5 and 6 membered rings.
- 3 To study the introduction of organometallic compounds, their preparations and their properties.
- 4 To study the details of the concept "phase" and to understand phase rule.

Course Outcomes: After completion of this course, student will be able to:

- 1 Understand the important name reactions in organic chemistry course and rearrangement.
- 2 Will know the basics of heterocyclic compounds and know the preparations.
- 3 Obtain the information regarding organometallic compounds.
- 4 Understand the basic of phase rule.

Pre-requisite of course: Understanding of basic organic name reactions, heterocyclic chemistry and Physical chemistry

Teaching and Examination Scheme

Theory Hours	Tutorial Hours	Practical Hours	ESE	IA	CSE	Viva	Term Work
5	0	2	50	30	20	25	25

Contents : Unit	: Topics			
1	Name reactions and Rearrangements Mechanism and applications of Arndt Eistert reaction, Barbier- Wieland reaction, Grignard reaction, Kolbe synthesis, Michael addition, Mannich reaction, Wurtz reaction, Beckmann rearrangement, Hoffmann rearrangement, Curtius rearrangement, Fries rearrangement			

Contents : Unit	: Topics				
2	Heterocyclic compounds of 5 and 6 membered rings Introduction, physical properties of pyrrole, furan and thiophene, synthesis of pyrrole (Knorr synthesis, Paal-knorr synthesis, Hantzsch synthesis), chemical reactions of pyrrole, synthesis of furan (Paal-Knorr synthesis, FiestBenary reaction, from other heterocyclic system), chemical reactions of furan, synthesis of thiophene (Paal-knorr synthesis, Simmon-smith reaction, from unsaturated compounds), chemical reactions of thiophene, Synthesis, physical and chemical properties of pyridine and Quinoline.				
3	Organometallic compounds Introduction Metallic Carbonyls: General methods of preparation, general properties, Structure and nature of M-CO bonding in carbonyls, Effective atomic number (EAN) rule as applied to metallic carbonyls, 18-electron rule as applied to metallic carbonyls, Some carbonyls, Metallic Nitrosyls: :metal nitrosyls, Effective atomic number (EAN) rule as applied to metallic nitrosyls.				
4	Phase rule Introduction, What is Meant by a 'Phase', What Is Meant by 'Components', Degrees of Freedom, Derivation of the Phase Rule, Derivation of the Phase Rule, Experimental Determination of Transition Point, The WaterSystem, The Sulphur System, Two- component Systems, The Silver-Lead System, The Magnesium-Zinc System, Three component system: Representation of triangular plot, partially miscible ternary liquid system.				
	Total Hours				

Suggested List of Experiments:

Contents : Unit	Topics	Contact Hours
1	Experiments Experiment 1, Experiment 2, Experiment 3, Experiment 4, Experiment 5, Experiment 6, Experiment 7	
	Total Hours	

Textbook:

- 1 An Introduction to Organometallic Chemistry, A. W. Parkins , R. C. Poller, Red Globe Press London, 1986
- 2 A textbook of organic chemistry, Bahl Arun, S Chand & Company, 2016

References:

- 1 Physical Chemistry, Physical Chemistry, Castellan G. W., Narosa Publishing House, 2004
- 2 Organic Chemistry, Organic Chemistry, Morrison and Boyd, Pearson India, 2016
- 3 Organic Chemistry, Organic Chemistry, S.M. Mukherji, newagepublishers, 2017
- 4 Heterocyclic Chemistry, Heterocyclic Chemistry, John A. Joule, Keith Mills, Wiley, 2010

Suggested Theory Distribution:

The suggested theory distribution as per Bloom's taxonomy is as follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation						
Remember / Knowledge	Understand	Apply	Analyze	Evaluate	Higher order Thinking	
20.00	30.00	25.00	15.00	10.00	0.00	

Instructional Method:

- 1 The teacher in addition to conventional teaching method by black board, may also use any of tools such as demonstration, role play, Quiz, brainstorming, MOOCs etc.
- 2 The internal evaluation will be done on the basis of continuous evaluation of students in the laboratory and class-room.
- 3 Practical examination will be conducted at the end of semester for evaluation of performance of students in laboratory.
- 4 Students will use supplementary resources such as online videos, NPTEL videos, ecourses, Virtual Laboratory
- 5 Use of hazardous/toxic chemicals should be avoided as far as possible in laboratory.
- 6 All students in the laboratory must wear safety goggles and lab coats during lab session.

Supplementary Resources:

- 1 https://www.youtube.com/user/TMPChem
- 2 http://ocw.mit.edu/courses/chemistry/
- 3 https://www.youtube.com/user/PradeepKshetrapal
- 4 https://www.youtube.com/playlist?list=PL166048DD75B05C0D
- 5 http://www.organic-chemistry.org/reactions.htm