

Subject Code: 02MB0532

Subject Name: Environmental Biotechnology (Elective)

M.Sc. Semester- III

OBJECTIVE: Students are expected to have the advanced learning of environmental biotechnology. The course also discusses application of microbial environment, Eutrophication and its management, microorganisms in extreme environments, microbiological treatment of waste water, bioremediation and biodegradation of xenobiotics.

Credits Earned: 6 Credits

Course outcomes: By the end of this course students should be able to

- To describe and comprehend the fundamental concepts of solid waste management, biodegradation, bioremediation process and microbial treatment of waste water.
- To understand, evaluate and analyze the role of aerobic and anaerobic microbial process in biogeochemical cycles, recycling and waste management strategies.
- To analyze and develop critical thinking skills in order to communicate to a wide range of audiences with oral and written reports that target the field of environmental microbiology.
- To acquire analytical skills in designing of cost effective and sustainable waste management strategies with consideration of public health, safety, welfare of society and environment by contributing to innovation and entrepreneurship.

Teaching Scheme:

Teaching Scheme (Hours)			Cradita	Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Cieults	ESE (E)	IA (M)	CSE (I)	Viva (V)	Practical (PR)	Marks
5	0	2	6	50	30	20	25	25	150

Pre-Requisite of Course: N.A.

Contents:

Unit	Topics	Contact Hours		
		nours		
1	Microbial Environment			
	Microbiology of Water -Importance of water; Types of Water; Water borne			
	diseases; Microbiology of air- Airborne microorganisms;			
	Soil Microbiology- Layers of Soil; Classification; Scope and Importance of Soil			
	Microbiology;			
	Role of microbes in biogeochemical cycles - Carbon cycle; Sulphur cycle; Nitrogen cycle and Phosphorus cycle.			
2	Piotochnology for Solid waste Management	16		
Z	Biotechnology for Solid waste Management	10		
	Basic aspect of solid waste management, Current practice of solid waste			
	treatment of solid wests and bioges generation. Comparison of Aerobic and			
	Anagraphic solid waste treatment. Treatment of Hazardous wastes Riomodical			
	Waste management			
	Compositing: Objectives fundamentals microbiology factors influencing			
	composing and composing systems Compost quality and uses			
	Vermicomposting			
3	Microbial treatment of waste water	16		
5	Waste water treatment - Waste water characterization and its significance: COD	10		
	BOD Inorganic constituents solids biological components Primary secondary			
	and tertiary treatment of waste water. Principles and aims of biological			
	wastewater treatment processes. Biochemistry and microbiology of inorganic			
	phosphorus and nitrogen removal. Suspended growth technologies: Activated			
	sludge, oxidation ditches, waste stabilization ponds. Fixed film technologies:			
	Trickling filters, rotating biological contactors, fluidized bed and submerged			
	aerated filters. Anaerobic waste water treatment systems: RBC, UASB,			
	anaerobic filters. Merits and demerits of anaerobic treatment of waste.			
4	Biodegradation of organic pollutants	18		
	Mechanisms and factors affecting biodegradation. Pollution problems and			
	biodegradation of simple aliphatic, aromatic, polycyclic aromatic hydrocarbons,			
	halogenated hydrocarbons, azo dyes, lignin and pesticides.			
	Bioremediation			
	Introduction of Bioremediation; advantages and applications; Types of			
	bioremediation ;Natural (attenuation) ;Ex-situ and In-situ ;Bioaugmentation and			
	bio stimulation ;Solid phase and slurry phase bioremediation;			
	Biological Filtration Processes for Decontamination of Air Stream; Biofiltration;			
	Biotrickling Filtration; Bio scrubbers; Use of microbes for Heavy metal			
	detoxification.			
	Total	60		

References:

- 1. Microbiology, M. J. Pelczer ,E.C.S Chan (1993), McGraw Hill Education Private limited , New Delhi.
- 2. Environmental Microbiology, S.K.Agarwal (2009), APH Publishing corporation, New Delhi
- 3. Introduction to Environmental biotechnology, A.K.Chatterji (2011), PHI Learning private limited, New Delhi.
- Textbook of Environmental Biotechnology by Pradipta Kumar Mohapatra, (2006), I. K. International publishing house, New Delhi
- 5. Biodegradation and bioremediation by M.Alexander (1999), Academic press
- 6. Environment Biotechnology by T.R. Srinivas (2008), New Age Publishers

Suggested Theory distribution:

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process.

	Distribution evaluation	of Theory	for course	delivery and	
Remember	Understand	Apply	Analyze	Evaluate	Create
20%	20%	30%	15%	10%	5%

Instructional Method:

- m. The course delivery method will depend upon the requirement of content and need of students. The teacher in addition to conventional teaching method by black board, may also use any of tools such as demonstration, role play, Quiz, brainstorming, etc.
- n. The internal evaluation will be done on the basis of continuous evaluation of students in the class-room in the form of attendance, assignments, verbal interactions etc.
- o. Students will use supplementary resources such as online videos, NPTEL videos, e-courses, Virtual Laboratory.

Expreiments

- 1. To Estimate Total Hardness of Water B) To Estimate Calcium Hardenss of Water
- 2. To Estimate The Total Solids (Ts), Total Dissolved Solids (TDS) And Suspended Solids (SS) In The Given Water Sample.
- 3. To Estimate Dissolved Oxygen Content of Wastewater (DO)
- 4. To Estimate Chemical Oxygen Demand of The Given Sample (COD)
- 5. To Estimate Biological Oxygen Demand (BOD)
- 6. To Measure the Concentration of Chloride in the Given Sample
- 7. To Estimate the Amount of Ammonical Nitrogen in the Given Sample
- 8. To Estimate the Amount of Nitrate Nitrogen
- 9. To Estimate the Amount of Phosphorus Phosphate in the Given Sample
- 10. To Find Out The Most Probable Number of Coliforms In The Given Water Sample