

PROGRAM	Master of Business Administration-Business Analytics
SEMESTER	II
COURSE TITLE	Business Forecasting (using EViews)-I
COURSE CODE	04MB0212
COURSE CREDITS	02
COURSE DURATION	28 hrs (28 sessions of 60 minutes each)

COURSE OUTCOMES:

- Evaluate the qualitative and quantitative techniques of forecasting.
- Apply different explanatory/causal quantitative techniques of forecasting using EViews.
- Estimate the future demand, sales, causal relationships and so on to facilitate quantitative decision making.

COURSE CONTENTS:

Module	Unit/ Sub Unit				
No.					
I	Introduction to Eviews: Creating a Workfile, Importing Excel/text ASCII/SPSS data files	8			
	to Eviews, Entering data manually, Eviews help menu, Examining the data- simple plots,				
	descriptive statistics, creating/deleting variables, basic mathematical operations,				
	Eviews functions. Introduction to Forecasting: meaning and significance of forecasting, types of				
	forecasts, general steps in forecasting, forecasting techniques- qualitative techniques				
	(market research method, sales force composite method, executive opinion method,				
	Delphi method) and quantitative techniques (Explanatory model and Time-series)			
	model), Data requirement (time-series Vs Cross-sectional data).				
II	The Simple Linear Regression Model (SLRM): Scatter plot, correlation, Estimating a	8			
	simple linear regression, residual plot, prediction using SLRM, Hypothesis testing of	:			
	regression coefficient, interval estimate of the slope, Coefficient of determination,				
	Normality test of residuals (histogram and Jarque-Bera statistic).				
III	Multiple Regression Models: Least square estimation of Multiple Regression Model	12			
	(MRM), prediction using MRM, test of significance of regression coefficients, interval				
	estimate of the regression coefficients, Goodness of fit (R-square, adjusted R-square),				
	significance of the model (F-test), Standard Error of regression model, MRM with				
	dummy variables (categorical variables) as predictors, interaction variable as predictor,				
	the concepts of heteroskedasticity and multicollinearity.				
	Practical:				
	 Exercise on data import in Eviews and plots using Quick/Graph 				
	Exercise using Eviews mathematical operators and functions				
	3. Descriptive statistics using Eviews				
	4. Scatter plot in SLRM				
	5. Estimating an SLRM				
	6. Plotting the least square residuals in SLRM				
	7. Forecasts using SLRM				
	8. Interval estimation for regression coefficients in SLRM				
	9. Test of significance of regression coefficient in SLRM				
	10. Normality test for residuals using histogram plot				
	11. Normality test for residuals using Jarque-Bera statistic				
	12. Calculation of coefficient of determination in SLRM and its interpretation				

- 13. Least square estimation of Multiple Regression Model (MRM)
- 14. Prediction using MRM
- 15. Test of significance of regression coefficients in MRM
- 16. Interval estimate of the regression coefficients in MRM
- 17. Calculation of goodness of fit (R-square, adjusted R-square) and its interpretation
- 18. Test of Significance of the model in MRM (F-test)
- 19. Calculation and interpretation of Standard Error of Multiple Regression model
- 20. MRM with dummy variables (categorical variables) as predictors
- 21. MRM with Interaction variable as a predictor

EVALUATION:

The students will be evaluated on a continuous basis and broadly follow the scheme given below:

		Weightage
Α	Continuous Evaluation Component (Assignments / Quizzes /Class Participation etc.)	20% (C.E.C.)
В	Internal Assessment (MCQ)	30% (I.A.)
С	End-Semester Practical Examination	50% (External Assessment)

SUGGESTED READINGS:

TEXTBOOKS:

SNo	Author/s	Name of the book	Publisher	Edition and
				Year
T-01	R. Carter Hill, William E.	Using EViews for	John Wiley and	2 nd , 2001
	Griffiths, George G. Judge	Undergraduate Econometrics	Sons	
T-02	R. Carter Hill, William E.	Principles of Econometrics	John Wiley and	5 th , 2018
	Griffiths, Guay C. Lim		Sons	

REFERENCE BOOKS:

S. No.	Author/s	Name of the book	Publisher	Edition and Year
R-01	Steven Nahmias and Tava Lennon Olsen	Production and Operations Analysis	Waveland Press, Inc (USA)	2015