

PROGRAM	Master of Business Administration	
SEMESTER	II	
COURSE TITLE	Database Management Systems	
COURSE CODE	04MB0213	
COURSE CREDITS	03	
COURSE DURATION	42 Hrs (42 sessions of 60 minutes each)	

COURSE OUTCOMES:

- Understand the major DBMS concepts
- Learn effective ways of building a model of the real world and optimizing it through normalization algorithms
- Study of database concepts with emphasis on network, CODASYL, and relational models and their application to business systems.
- Realize what database system is and list its characteristics
- Write basic SQL statements for data creation

COURSE CONTENTS:

Unit No	Unit / Sub Unit	Sessions
I	Introduction to Databases and Transaction: What is Database system, Purpose of	08
	Database System, view of data, Relational Databases, Database Architecture,	
	Transaction Management	
	Data Models:	
	The importance of Data Models, Basic Building Blocks, Business Rules, The evolution of	
	Data Models, Degrees of Data Abstraction. Object Oriented Data Model	
Ш	Database Design, ER-Diagram and Unified Modelling Language: Database Design and	08
	ER Model: Overview, ER-Model, Constraints, ER-Diagrams, ERD Issues, Weak Entity	
	Sets, Codd's rules, Relational Schemas, Introduction to UML	
III	Relational Algebra and Calculus: Relational Algebra: Introduction, Selection and	10
	Projection, Set Operations, Renaming, Joins, Division, Syntax, Semantic. Operators,	
	grouping and ungrouping, Relational Comparison.	
	Calculus: Tuple Relational Calculus, Domain Relational Calculus, Calculus vs Algebra,	
	Computational Capabilities.	
IV	Constraints, Views and SQL: What is Constraints, types of Constrains, Integrity	10
	Constraints	
	Views: Introduction to views, Data independence, security, updates on views,	
	comparison between tables and views	
	SQL: Data definition, Aggregate function, Null Values, Nested sub Queries, Joined	
	relations, and Triggers	
٧	Relational database model: Logical view of data, keys, and Integrity rules: Relational	06
	Database design: Features of good Relational Database Design, Atomic Domain and	
	Normalization (1NF, 2NF, 3NF, BCNF)	

EVALUATION:

The students will be evaluated on a continuous basis and broadly follow the scheme given below:

		Weight age
Α	Assignment & Presentation	20%
В	Internal Assessment	30% (I.A.)
С	End-Semester Examination	50% (External Assessment)

SUGGESTED READINGS:

Text Books:

Sr. No	Author/s	Name of the Book	Publisher	Edition & Year
T1	A Silberschatz, H Korth, and S Sudarshan	"Database System and Concepts	McGraw-Hill	fifth Edition
T2	Rob, Coronel	Database Systems"	Cengage Learning	Seventh Edition

Reference Books:

Sr. No	Author/s	Name of the Book	Publisher	Edition and
				Year
R-01	Rini Chakrabarti, Shilbhadra	Advanced Database	Wiley	First Edition
	Dasgupta	Management System		
R-02	Arun K. Majumdar, Pritimoy	Database Management	McGraw Hill Education	2017
	Bhattacharyya	Systems		
R-03	C.J. Date	An Introduction to Database	Pearson	8 th Edition
		Systems		