

PROGRAM	Master of Business Administration
SEMESTER	2
COURSE TITLE	Quantitative Techniques for Decision Making
COURSE CODE	04MB0206
COURSE CREDITS	3
COURSE DURATION	42 Hrs (42 sessions of 60 minutes each)

COURSE OUTCOME

- Develop the skill and ability to express a given real-life situation into a linear programming format and solve them.
- Formulate and Apply relationship between linear programming and its dual problem and distinguish between linear and integer programming problems.
- Understand special cases of Linear Programming Problem and Apply transportation methods in appropriate situations to numerous business problems.
- Apply assignment methods in appropriate situations to resource allocation problems.
- Analyze the problems of decision making under probabilistic situations and Evaluate decision trees to solve business problems.

COURSE CONTENTS:

Unit No	Unit / Sub Unit	
I	Linear Programming Problem (LPP) 1 – Formulation:	
	Introduction to Linear Programming, Requirements, Assumptions and Limitations	
	and Application of LPP, LPP Model Formulation – Maximization Problems and	
	Minimization Problems (Max 4-Variables and 4-Constraints), General Structure of Linear Programming Problems	
	Linear Programming Problem (LPP) 2 – Graphical Method:	
	Concept of Feasible Region, Solution of LP Problems using Graphical Method	
	Maximization and Minimization Problems (Max 4-Constraints),	
	Special Cases in LPP – Multiple or Alternate Optimum Solutions, Redundant	
	Constraint, Unbounded Solution, and Infeasible Solution	
	Note: Constantiate of all transport (Loss then transport on them transport on the sector of	
	Note: Constraints of all types (Less than type, Greater than type and combination of	
	both the types) should be covered	
II	Dual LP Problem and Sensitivity Analysis of LP Solution:	10
	Introduction to concept of Dual LPP. Relation between Primal Problem and Dual	
	LPP. Economic Interpretation of Dual LPP. Conversion of Primal Problem to Dual	
	LPP, Solution of LPP and Dual LPP using QM for Windows software, Introduction to	
	Post-Optimal Sensitivity Analysis, Sensitivity Analysis on objective coefficients (c _i)	
	and resources coefficients (b) using QM for Windows software	
	Integer Linear Programming Problem:	

	Introduction, Types of Integer programming problems (Pure-Integer, Mixed-Integer and Binary-Integer problems) and their applications, Model Formulation, Graphical solution of ALL-integer LPP, Solution of Integer LPP using MS Excel and QM for Windows software	
	Unrestricted Variables	
111	Transportation Problem (TP)	8
	Introduction, Structure of TP, Solution of TP – Initial Feasible Solution (IFS) using Lowest Cost Method, Vogel's Approximation Method (VAM) and Maximum Demand (MD) Method, Finding Optimal Solution using MODI Method, Types of Transportation Problem – Balanced and Unbalanced Problems, Minimization and Maximization Objectives, Case of Degeneracy and Prohibited or Restricted Route, Unique Optimum Solution and Multiple Optimum Solutions	
	Note: Max 5X5 Transportation Matrix, MODI Method - Maximum One Iterations after IFS, Degeneracy to be covered at Conceptual Level, not to be Included in Numerical Problem Solution. Use of QM for Windows software to solve problems.	
IV	Assignment Problem (AP)	6
	Introduction, Structure of AP, Solution of AP using Hungarian Method, Types of Assignment Problems - Balanced and Unbalanced Problems, Minimization and Maximization Objectives, Restricted Assignment, Unique Optimum Solution and Multiple Optimum Solutions, Travelling Salesman Problem (TSP)	
	Note: Max 5X5 Assignment Matrix, Maximum Three Iterations after Row and Column Minimization. Use of OM for Windows software to solve problems	
v	Decision Theory:	8
	Introduction, Structure of Decision-Making Problem – The Decision-maker, Acts and Events, Payoff and Payoff Matrix, Regret or Opportunity Loos Table, Decision- Making under Risk – Expected Monetary Value (EMV), Expected Value of Perfect Information (EVPI), Expected Opportunity Loss (EOL), Decision-Making under uncertainty – Maximax and Maximin Payoff Criterion, Minimax Regret Criterion, Criterion of Equal Likelihood, Hurwitz α -Criterion	
	Decision Tree Analysis: Single Stage Decision Problems.	
	Note: Use of QM for Windows software to solve problems.	

EVALUATION:

The students will be evaluated on a continuous basis and broadly follow the scheme given below:

	Component	Weightage
А	Continuous Evaluation Component (10% Assignments / Quizzes / Class Participation)	20% (C.E.C.)
В	Internal Assessment	30% (I.A.)

SUGGESTED READINGS:

Text Books:

Sr. No	Author/s	Name of the Book	Publisher	Edition & Year
T-01	J K Sharma	Operations Research	TRINITY Press	Latest Edition
T-02	Barry Render, Ralph M. Stair, Jr.	Quantitative Analysis for Management	Pearson	Latest Edition

Reference Books:

Sr. No	Author/s	Name of the Book	Publisher	Edition & Year
R-01	N D Vohra	Quantitative Techniques in	Tata	Latest Edition
		Management	McGrawHill	
R-02	Hamdy Taha	Operations Research	Pearson	Latest Edition
R-03	Anderson, Sweeny,	An Introduction to Management	Cengage	Latest Edition
	Williams	Science	Learning	
R-04	V K Kapoor	Operations Research	Sultan Chand	Latest Edition
			and Sons	
R-05	Hiller and Liebermann	Introduction to Operations Research	Tata McGraw	Latest Edition
			Hill	