

| PROGRAM         | Master of Business Administration       |
|-----------------|-----------------------------------------|
| SEMESTER        | 3                                       |
| COURSE TITLE    | Database Management Systems             |
| COURSE CODE     | 04MB0339                                |
| COURSE CREDITS  | 03                                      |
| COURSE DURATION | 42 Hrs (42 sessions of 60 minutes each) |

# COURSE OUTCOMES:

- \* Understand the major DBMS concepts
- \* Learn effective ways of building a model of the real world and optimizing it through normalization algorithms
- \* Study of database concepts with emphasis on network, CODASYL, and relational models and their application to business systems.
- \* Realize what database system is and list its characteristics
- \* Write basic SQL statements for data creation

### COURSE CONTENTS:

| Unit | Unit / Sub Unit                                                                         | Sessions |
|------|-----------------------------------------------------------------------------------------|----------|
| No   |                                                                                         |          |
| I.   | Introduction to Databases and Transaction: What is Database system, Purpose of          | 08       |
|      | Database System, view of data, Relational Databases, Database Architecture, Transaction |          |
|      | Management                                                                              |          |
|      | Data Models:                                                                            |          |
|      | The importance of Data Models, Basic Building Blocks, Business Rules, The evolution of  |          |
|      | Data Models, Degrees of Data Abstraction. Object Oriented Data Model                    |          |
| П    | Database Design, ER-Diagram and Unified Modelling Language: Database Design and         | 08       |
|      | ER Model: Overview, ER-Model, Constraints, ER-Diagrams, ERD Issues, Weak Entity Sets,   |          |
|      | Codd's rules, Relational Schemas, Introduction to UML                                   |          |
| 111  | Relational Algebra and Calculus: Relational Algebra: Introduction, Selection and        | 10       |
|      | Projection, Set Operations, Renaming, Joins, Division, Syntax, Semantic. Operators,     |          |
|      | grouping and ungrouping, Relational Comparison.                                         |          |
|      | Calculus: Tuple Relational Calculus, Domain Relational Calculus, Calculus vs Algebra,   |          |
|      | Computational Capabilities.                                                             |          |
| IV   | Constraints, Views and SQL: What is Constraints, types of Constrains, Integrity         | 10       |
|      | Constraints                                                                             |          |
|      | Views: Introduction to views, Data independence, security, updates on views,            |          |
|      | comparison between tables and views                                                     |          |
|      | SQL: Data definition, Aggregate function, Null Values, Nested sub Queries, Joined       |          |
|      | relations, and Triggers                                                                 |          |
| v    | Relational database model: Logical view of data, keys, and Integrity rules: Relational  | 06       |
|      | Database design: Features of good Relational Database Design, Atomic Domain and         |          |
|      | Normalization (1NF, 2NF, 3NF, BCNF)                                                     |          |

#### **EVALUATION:**

The students will be evaluated on a continuous basis and broadly follow the scheme given below:

|   |                           | Weight age  |           |
|---|---------------------------|-------------|-----------|
| А | Assignment & Presentation | 20%         |           |
| В | Internal Assessment       | 30% (I.A.)  |           |
| С | End-Semester Examination  | 50%         | (External |
|   |                           | Assessment) |           |

## SUGGESTED READINGS: Text Books:

| Sr.<br>No | Author/s                       | Name of the Book     | Publisher   | Edition &<br>Year |
|-----------|--------------------------------|----------------------|-------------|-------------------|
| T1        | A Silberschatz, H Korth, and S | "Database System and | McGraw-Hill | fifth Edition     |
|           | Sudarshan                      | Concepts             |             |                   |
| T2        | Rob, Coronel                   | Database Systems"    | Cengage     | Seventh           |
|           |                                |                      | Learning    | Edition           |

## **Reference Books:**

| Sr.         | Author/s                     | Name of the Book            | Publisher   | Edition and             |
|-------------|------------------------------|-----------------------------|-------------|-------------------------|
| <b>D</b> 01 |                              |                             | A # (*)     |                         |
| R-01        | Rini Chakrabarti, Shiibhadra | Advanced Database           | wiley       | First Edition           |
|             | Dasgupta                     | Management System           |             |                         |
| R-02        | Arun K. Majumdar, Pritimoy   | Database Management         | McGraw Hill | 2017                    |
|             | Bhattacharyya                | Systems                     | Education   |                         |
| R-03        | C.J. Date                    | An Introduction to Database | Pearson     | 8 <sup>th</sup> Edition |
|             |                              | Systems                     |             |                         |