

PROGRAM	Master of Business Administration (Business Analytics)
SEMESTER	4
COURSE TITLE	Hadoop & Apache Spark
COURSE CODE	04MB0456
COURSE CREDITS	2
COURSE DURATION	28 Sessions

COURSE OUTCOMES:

- Break down the fundamentals of Hadoop and Spark, the technology that is revolutionizing the Analytics and Big Data world.
- Judge it, performs faster than Map Reduce for Iterative Algorithms or Interactive Data Mining.
- Integrate and Analyze the in-memory cluster computing for lightning fast speed and supports Python, R, and Scala APIs for ease of development.
- Integrate a wide range of data processing scenarios by combining SQL, streaming and complex analytics together seamlessly in the same application.
- Analyze and Judge on top of Hadoop, Mesos, standalone, or in the cloud, diverse data sources such as HDFS, Cassandra, HBase, or S3.

Unit No	Unit / Sub Unit	Sessions
I	Introduction, Architecture, HDFS, Cluster, Ecosystems, Map Reduce: Introduction:Big Data concepts, Data Analytics Architecture, Compare Hadoop vs traditional systems, Attributes of Big Data, Types of data, other technologies vs Big Data. Hadoop Architecture and HDFS:What is Hadoop? Hadoop History, Distributing Processing System, Core Components of Hadoop, HDFS Architecture, Hadoop Master – Slave Architecture, Daemon types - Learn Name node, Data node, Secondary Name node. Hadoop Clusters and the Hadoop Ecosystem: What is Hadoop Cluster? Pseudo Distributed mode, Type of clusters, Hadoop Ecosystem, Pig, Hive, Oozie, Flume, SQOOP. Hadoop Map Reduce Framework: Overview of Map Reduce Framework, Map Reduce Architecture, Learn about Job tracker and Task tracker, Use cases of Map Reduce, Anatomy of Map Reduce Program.	8
II	Hive and HiveQL, PIG, Apache SQOOP, Flume, NoSQL, Oozie and Zookeeper: Hive and HiveQL: What is Hive?, Hive vs MapReduce, Hive DDL – Create / Show / Drop Tables, Internal and External Tables, Hive DML – Load Files & Insert Data, Hive Architecture & Components, Difference between Hive and RDBMS, Partitions in Hive PIG: PIG vs MapReduce, PIG Architecture & Data types, Shell and Utility components, PIG Latin Relational Operators, PIG Latin: File Loaders and UDF, Programming structure in UDF, PIG Jars Import, limitations of PIG. Apache SQOOP, Flume: Why and what is SQOOP? SQOOP Architecture, Benefits of SQOOP, Importing Data Using SQOOP, Apache Flume Introduction, Flume Model and Goals, Features of Flume, Flume Use Case. NoSQL Databases: What is HBase? HBase Architecture, HBase Components, Storage	12

COURSE CONTENTS:

	Model of HBase, HBase vs RDBMS.	
	Oozie and Zookeeper: Oozie – Simple/Complex Flow, Oozie Workflow, Oozie	
	Components, Demo on Oozie Workflow in XML, What is Zookeeper? Features of	
	Zookeeper, Zookeeper Data Model.	
Ш	Introduction to Spark, Resilient Distributed Dataset and Data Frames:	8
	Introduction to Spark: What is Spark and what is its purpose?, Components of the	
	Spark unified stack, Resilient Distributed Dataset (RDD), Downloading and installing Spark standalone, Scala and Python overview, Launching and using Spark's Scala and	
	Python shell.	
	Resilient Distributed Dataset and Data Frames: Understand how to create parallelized	
	collections and external datasets, Work with Resilient Distributed Dataset (RDD)	
	operations, Utilize shared variables and key-value pairs.	
	Introduction to Spark libraries: Understand and use the various Spark libraries.	
	Spark configuration, monitoring and tuning: Understand components of the Spark	
	cluster, Configure Spark to modify the Spark properties, environmental variables, or	
	logging properties, Monitor Spark using the web UIs, metrics, and external	
	instrumentation, Understand performance tuning considerations. Graphs and Social	
	Media data and construct recommendation systems	
	Practical:	
	Optimization of Geographic Cluster	
	Minimize Network traffic among Cluster	
	Word Count Mapper examples	
	Program applications using tools like Hive, pig, NO SQLfor Big data	
	Applications	
	Construct scalable algorithms for large Datasets using Map Reduce tashniguas	
	techniques Event deduction model 	
	 Event deduction model Implement algorithms forClustering, Classifying and finding associations in 	
	Big Data	
	 Design and implement algorithms to analyze Big data like streams, Web 	

EVALUATION:

The students will be evaluated on a continuous basis and broadly follow the scheme given below:

	Component	Weightage
A	Continuous Evaluation Component (Assignments / Presentations/ Quizzes / Class Participation/ Practical Record / Practical Examination etc.)	20% (C.E.C)
В	Internal Assessment	30% (I.A.)
С	End-Semester Examination (Practical / Viva)	50% (Practical/Viva) (External Assessment)

SUGGESTED READINGS:

Text Books:

Sr. No	Author/s	Name of the Book	Publisher	Edition and Year
T-01	Garry Tarkington	Hadoop Beginner's Guide	PACKT Publishing Ltd.,	1 st Edition, 2015
T-02	Muhammad Asif Abbasi	Learning Apache Spark 2	PACKT Publishing Ltd.,	1 st Edition, 2017

Reference Books:

Sr. No	Author/s	Name of the Book	Publisher	Edition and Year
R-01	Benjamin Bengfort, Jenny	Data Analytics with Hadoop: An Introduction for Data	O' Reilly Media Inc.,	1 st Edition , 2016.
R-02	Kim Jonathan R.	Hadoop Real-World	PACKT Publishing Ltd.,	1 st Edition ,
	Owens, Brain Femiano, Jon Lentz	solution's Cook book		2016.
R-03	Bill Chambers, Matei Zahria	Spark: The Definitive Guide	O' Reilly Media Inc.	1 st Edition , 2018.