

Syllabus for Diploma Engineering

Semester -VI

Subject Name: Operation and Control of Power System

Subject Code: 09EE2603

Diploma Branch in which this subject is offered: Electrical Engineering

Objective: For student of diploma engineering to work in power transmission and distribution sector, it is necessary for them to have knowledge of operation and control of power system. If they are aware of how power system works and which are the controlling methods to flow power smoothly, this skill will be advantageous for them to work better and find better opportunities in electrical power transmission and distribution sector. Hence this course is design to make them aware about different equipment and methods used to control power in power system and maintain stability of the system.

Credits Earned: 5 Credits

Course Outcomes: After completion of this course, student will be able

- 1. To understand voltage control in transmission line.
- 2. To calculate per unit value of power system parameters.
- 3. To understand economic load dispatch and optimal unit commitment.
- 4. To apply methods to maintain power system stability.
- 5. To understand load flow analysis for power system stability.

Pre-requisite of course: DC circuit, AC circuit, electrical power transmission and distribution, generation of electrical power.

Teaching and Examination Scheme

Teaching Scheme (Hours)			Cuadita	Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE	IA	CSE	Viva	Term work	Marks
4	0	2	5	50	30	20	25	25	150

Contents:

Unit	Topics	Contact hours	Weightage (%)
1	Fundamentals of power in power system	20	36
	Introduction		
	Different power system parameters and its per unit value		
	• Complex power (active, reactive and apparent power) and power		
	factor, p.u. representation of complex power		
	• The single line diagram and impedance of reactance diagram		

	D .1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1		
	Represent balanced three phase with single phase		
	Represent impedance and reactance diagram by single line		
	diagram		
	Voltage control in transmission line		
	Need to control transmission line voltages		
	Concept of real and reactive power transfer in long distance transposition lines.		
	transmission lines		
	Active and reactive power transfer in long transmission line		
	• Methods to control active and reactive power: Automatic		
	generation control, Transformer taps changer control, phase		
	 shifting transformer, synchronous machine excitation control Real and reactive power control methods: series compensation 		
	and shunt compensation, load compensation and system		
	compensation		
	What is FACTS, FACTS controller for active and reactive control		
	• FACT controllers: Series, shunt, series-shunt		
	Pros and cons of FACTS controller		
2	Economic load dispatch and optimal unit commitment	10	18
_		10	10
	• Introduction.		
	Load curve and load duration curve Target and factors, manipular demand factors are a considered.		
	Terms and factors: maximum demand, demand factor, average load, load factor and connected load		
	Criteria for economic load dispatch of power		
	Optimal unit commitment under various conditions		
	Constrains in unit commitment		
3	Stability in power system	12	21
		12	21
	Introduction		
	• Stability in different state of power system: steady state stability,		
	dynamic stability and transient stability		
	Mechanism for speed governing of steam turbine : Turbine speed governing system		
	governing systemEqual area criterion to maintain steady state stability in inter		
	connected power system		
4	Load flow analysis	14	25
	• Introduction		
	Load flow in power system		
	Need for load flow analysis in interconnected power system		
	Different buses in power system		
	Different parameters of power system transmission line		
	• The GS and NR method to find different parameters of		
	transmission lines by using 3 bus power systems		
	Graph theory for DC load flow analysis		

Syllabus for Diploma Engineering

Suggested Theory distribution:

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation						
Remember	Understand	Apply	Analyse	Evaluate	Create	
35%	35%	15%	15%	0%	0%	

Suggested List of Practical/Exercise:

Sr. No.	Unit No.	Name of Topics	Contact Hours
1	1	To simulate a program to calculate per unit values of power system parameters.	4
2	1	To simulate a long transmission line and observe active power flow in power system	2
3	1	To simulate a long transmission line and observe reactive power flow in power system	2
4	2	To simulate real and reactive power control method in power system.	4
5	2	To simulate economic load dispatch in power system.	4
6	3	To develop program for unit commitment in power system.	4
7	3	To do analysis of steady state stability of power system.	4
8	3	To do analysis of transient state stability of power system.	4

Instructional Method:

- The course delivery method will depend upon the requirement of content and need of students. The teacher in addition to conventional teaching method by black board, may also use any of tools such as demonstration, role play, Quiz, brainstorming, MOOCs etc.
- The internal evaluation will be done on the basis of continuous evaluation of students in the laboratory and class-room.
- Practical examination will be conducted at the end of semester for evaluation of performance of students in laboratory.
- d. Students will use supplementary resources such as online videos, NPTEL videos, e-courses, Virtual Laboratory.
- e. Show video or animation of working of various types of wiring system and electrical transmission and distribution network

Vadi Syllabus for Diploma Engineering

References:

- Sivanagaraju, "Power system operation and control", Dorling Kindersley(India) pvt ltd, 2010
- V Ramana, "Power control", system operation and Dorling Kindersley(India) pvt ltd, 2011
- 3. Allen J wood, "Power generation operation and control", John wiley and sons , second edition, 1996.
- 4. P S R Murty, "Operation and control in power system", Book Syndicate, second edition, 2011

Supplementary Resources:

- 1. https://circuitglobe.com/power-system.html
- 2. https://www.sciencedirect.com/topics/engineering/power-system-operation
- 3. https://posoco.in/en/
- 4. https://www.researchgate.net/publication/327968078_Introduction_to_Power_ System_Operation
- 5. https://electrical-engineering-portal.com/download-center/books-andguides/electricity-generation-t-d/power-system-control-operation