

Vadi Syllabus for Diploma Engineering

Semester -VI

Subject Name: Design of Electrical Machine and Equipment

Subject Code: 09EE2604

Diploma Branch in which this subject is offered: Electrical Engineering

Objective:

The aim of this subject is to develop knowledge on principles of design of static and rotating machines. Also students must able to understand the design fundamental concepts, design main dimensions & cooling systems of transformers and main dimensions of rotating machine.

Credits Earned: 5 Credits

Course Outcomes: After completion of this course, student will be able

- 1. To understand need of design and aspects of design.
- 2. To design motor starter and motor control panels.
- 3. To design various electromagnets.
- 4. To design and calculate parameters of transformer.
- 5. To design and calculate parameters of induction motor.

Pre-requisite of course: DC circuit, AC circuit, electrical DC machine and transformer, electrical rotating AC machine.

Teaching and Examination Scheme

Teaching Scheme (Hours)			Credits	Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE	IA	CSE	Viva	Term work	Marks
4	0	2	5	50	30	20	25	25	150

Contents:

Unit	Topics	Contact	Weightage
		hours	(%)
1	Fundamentals of electrical design	9	16
	Introduction		
	What is electrical design		
	Need of designing of machine		
	Limitation of design of machine		
	Properties of material used to design machine		
	Conducting material, insulating material and dielectric material.		
	Electrical machine affected by heating and cooling		
	Reason of heating in electrical machine		

	Different and of insulating material and its offers		
	Different grade of insulating material and its effect		
	Specific electrical loading and specific magnetic loading		
	• Factors on which the output of an electrical machine depends.		
	Parameters that affects size of machine	10	0.1
2	Design parameters for motor accessories	12	21
	Introduction		
	Design parameter for chock		
	Design parameter for A.C. motor starter		
	Design parameter for D.C. motor starter		
	Calculation of resistance step, calculation for number of section		
	and resistance of each section.		
	Design parameter for field regulator		
	Motor control panel design parameter		
3	Electromagnet and transformer design parameter	20	36
	• Introduction		
	What is electromagnet		
	Different types of electromagnets		
	Application of different electromagnet		
	Design different magnetic coils		
	• Flat faced armature type circular magnet, horse shoe type magnet,		
	plunger type magnet, magnetic clutches.		
	• What is transformer		
	Specification of small transformer		
	Design parameters of transformer		
	Design of core, design of winding, design of window area		
	Specification of distribution transformer and power transformer		
	• Equations of transformer		
	Design parameter for three phase transformer		
	Design of core, design of winding, design of window area,		
	electrical parameters, design of tank		
	Steps to design a transformer		
4	Induction motor design parameter	15	27
	Introduction		
	Specification of single-phase induction motor		
	Material used to design induction motor		
	Insulator, conductor and core		
	Single phase induction motor design parameters		
	Core dimension, Air gap, number of rotor slots, number of stator		
	slots, main winding		
	Steps to design single phase induction motor		
	Specification of three phase induction motor		
	Three phase induction motor design parameters		
	• Rating of motor, frame dimension, temperature rise,		
	Equation of three phase induction motor		
	• L and D relation for better power factor		
	Steps to design three phase induction motor		
	_		

Suggested Theory distribution:

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation						
Remember	Understand	Apply	Analyse	Evaluate	Create	
35%	35%	15%	15%	0%	0%	

Suggested List of Practical/Exercise:

Sr. No.	Unit No.	Name of Topics			
110.	110.		Hours		
1	1	Understand different insulating material used to design induction motor.	2		
2	2	Design electrical panel for laboratory use.	4		
3	2	Design starter for single phase induction motor.	4		
4	3	Design horse shoe type magnet as per data provided.	4		
5	3	Prepare report on steps of transformer designing.	2		
6	3	Design single phase transformer as per data provided.	4		
7	4	Design single phase induction motor considering data as per motor available in laboratory.	4		
8	4	Design three phase induction motor considering data as per motor available in laboratory.	4		

Instructional Method:

- a. The course delivery method will depend upon the requirement of content and need of students. The teacher in addition to conventional teaching method by black board, may also use any of tools such as demonstration, role play, Quiz, brainstorming, MOOCs etc.
- b. The internal evaluation will be done on the basis of continuous evaluation of students in the laboratory and class-room.
- c. Practical examination will be conducted at the end of semester for evaluation of performance of students in laboratory.
- d. Students will use supplementary resources such as online videos, NPTEL videos, e-courses, Virtual Laboratory.
- e. Show video or animation of working of various types of wiring system and electrical transmission and distribution network

Vadi Syllabus for Diploma Engineering

References:

- 1. V. Rajini, "Electrical machine design", Pearson India Education servicespyt ltd, 2018
- 2. A. K. Sawney, "Electrical machine design", Dhanpatrai& sons., latest edition.
- 3. JuhaPyrhonen, "Design of rotating AC machine", John wiley and sons, second edition,2014.
- 4. R. K. Agrawal, "Electrical machine design", S. K. Kataria & Sons, latest edition.
- 5. Alexander Gray, "Electrical Machine Design; The Design and Specification of Direct and Alternating Current Machinery", Creative Media Partners, 2018.
- 6. J. B. Gupta, "Electrical Installation, Estimating & Costing", S. K. Kataria & Sons, latest edition.

Supplementary Resources:

- 1. https://www.explainthatstuff.com/electricmotors.html
- 2. https://www.elprocus.com/transformer-design
- 3. https://www.machinedesign.com/basics-design/ac-motors
- 4. https://www.oreilly.com/library/view/electrical-machinedesign/9789353063740/xhtml/chapter004.xhtml
- 5. https://www.brighthubengineering.com/hvac/74957-starting-methods-forinduction-motors/
- 6. https://electronicsforu.com/electronics-projects/automatic-3-phase-inductionmotor-starter
- 7. https://education.jlab.org/qa/electromagnet.html