

Syllabus for Bachelor of Technology

Subject Code: 01ME1607 Subject Name: Advance Manufacturing Processes B. Tech. Year - III (Semester - 6)

Type of course : Graduate

Prerequisite : NA

Rationale : The course is prepared to provide the understating of Advance Manufacturing Processes.

Course Outcome :

After completion of this course, student will be able to

- 1. Understand the physics of non conventional machining process
- 2. Identify the limitation of conventional machining processes
- 3. Selection of advanced manufacturing process for product development
- 4. Analysis of advanced manufacturing machining processes
- 5. Product development using the advanced manufacturing processes

Teaching and Examination Scheme :

Teaching Scheme			Credits	Examination Marks					
				Theory Marks			Practical Marks		T - (- 1
Theory	Tutorial	Practical	С	ESE(E)	IA	CSE	Viva (V)	Term Work (TW)	Total Marks
3	0	2	4	50	30	20	25	25	150

Content :

Sr. No.	Content				
1	Conventional Manufacturing Processes- Review Capability analysis of existing manufacturing processes, Demand of new product in terms of size, shape, material, properties in various sector, Challenges in manufacturing to fulfill the requirements of industries,	03			
2	Non Conventional Machining Processes: Basic physics of conventional metal cutting operation, Difference between conventional and non conventional machining processes, Classification of Non conventional machining processes, Requirement of non conventional machining processes, Advantage and Disadvantage of non conventional machining processes	03			

Syllabus for Bachelor of Technology

	New Commentional Markinian Decomposition Theorem 1 Decomposition				
3	Non Conventional Machining Processes-Thermal Processes Physics of thermal non conventional machining processes, Classification of				
	Thermal processes Electric Discharge Machining (EDM) + Working Principal Process Peremeter				
	Electro Discharge Machining (EDM) : Working Principal, Process Parameter				
	MRR, Advantage, Disadvantage and Application, Variation of EDM				
	Electron Beam Machining (EBM) : Working Principal, Process Parameter MRR,				
	Advantage, Disadvantage and Application, Variation of EBM, Basic concept of Ion				
	Beam Machining				
	Laser Beam Machining (LBM) : Working Principal, Process Parameter, MRR,				
	Advantage, Disadvantage and Application, Variation of LBM				
4	Non Conventional Machining Processes-Electro-Chemical & Mechanical				
	Physics of Electro-Chemical Processes, Classification of Electrochemical				
	Electro Chemical Machining (ECM): Working Principal, Process MRR,				
	Advantage, Disadvantage and Application, Variation of ECM				
	Chemical Milling (CM): Working Principal, Process Parameter MRR,				
	Advantage, Disadvantage and Application	10			
	Abrasive Jet Machining (ABM): Working Principal, Process Parameter				
	MRR, Advantage, Disadvantage and Application, Water Jet Machining Processes				
	Ultrasonic Machining (USM): Working Principal, Process Parameter				
	Advantage, Disadvantage and Application Hybrid Processes: Working Principal, Process Parameter MRR,				
	Advantage, Disadvantage and Application				
	Additive Manufacturing				
	Introduction: Introduction to Prototyping, Traditional Manufacturing Vs.				
	Additive Manufacturing, Need for time compression in product development,				
	Usage of Additive Manufacturing parts				
	CAD Modeling and Data Processing for Additive Manufacturing:				
	CAD model preparation, Data Requirements, Data formats (STL, SLC, CLI,				
	RPI, LEAF, IGES, HP/GL, CT, STEP), Data interfacing, Part orientation and				
5	support generation, Support structure design, Model Slicing and contour data				
	organization. Photo polymerization: Working Principal, Process	12			
	Parameter, Advantage, Disadvantage and Application.				
	Powder Bed Fusion				
	Working Principal, Process Parameter, Advantage, Disadvantage and Application.				
	Extrusion-Based AM Systems				
	Working Principal, Process Parameter, Advantage, Disadvantage and Application				
•					

Distribution of Theory Marks

R Level	U Level	A Level	N Level	E` Level	C Level
10	20	25	25	10	10

Legends: R: Remember; U: Understand; A: Apply; N: Analyze; E: Evaluate; C: Create

List of Experiments :

1. Capability analysis of the conventional Lathe Machine

Department of Mechanical Engineering

Syllabus for Bachelor of Technology

- 2. Challenges in machining the advanced material
- 3. Process parameter and MRR Calculation of EDM
- 4. Process parameter and MRR Calculation of EBM
- 5. Process parameter and MRR Calculation of LBM
- 6. Process parameter and MRR Calculation of AJM
- 7. Process parameter and MRR Calculation of USM
- 8. Process parameter and MRR Calculation of ECM
- 9. Development of product using Photo polymerization
- 10. Development of product using FDM
- 11. Case study on selective laser sintering process
- 12. Virtual Lab

Reference books :

- 1. Modern Machining Process by P.C Pandey and H S Shah McGraw Hill Education India Pvt. Ltd. 2000
- 2. Production technology HMT McGraw Hill Education India Pvt. Ltd 2001
- 3. K. Jain, Advanced Machining Processes, Allied Publishers, 1st Edition, 2013.
- 4. M. K. Singh, Unconventional Machining processes, New Age International Publishers, 1st Edition, 2010
- 5. Chua C K, Leong K F, Chu S L, Rapid Prototyping: Principles and Applications in Manufacturing, World Scientific.
- 6. Gibson D W Rosen, Brent Stucker., Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer.

List of Open Base Software / learning website :

- 1. https://colab.research.google.com
- 2. https://atom.io
- 3. https://www.anaconda.com