

PROGRAM	Master of Business Administration-Business Analytics
SEMESTER	
COURSE TITLE	Business Forecasting (using EViews)-II
COURSE CODE	04MB0369
COURSE CREDITS	02
COURSE DURATION	28 Hours (28 sessions of 60 minutes each)

COURSE OUTCOMES:

- Apply time-series analytical tools to model, estimate, draw inference, and forecast in the context of real-world business problems.
- Critically evaluate the appropriate model for stationary and non-stationary time-series data using EViews
- Develop the foundation and understanding for further study of advanced econometric techniques.

COURSE CONTENTS:

Module	Unit/ Sub Unit		
No.			
I	Introduction to Time-series analysis: Concept and examples of time-series data,		
	Components of a time-series (Trend, Cyclical Variations, Seasonal Effects, Random		
	Fluctuations); Smoothing Techniques: Moving Averages, Exponential Smoothing;		
	Trend projection (linear, exponential), Calculation of seasonal indexes,		
	Deseasonalizing the time-series, Forecasting using deseasonalized time-series data.		
П	Regression with Time-series Data (Stationary): Concept of Stationarity in time-series	10	
	data, Introduction to lag variables,		
	Modelling dynamic relationships- Finite Distributed lag model (DL), Autoregressive		
	Model (AR), Autoregressive Distributed Lag Model (ARDL), Infinite Distributed Lag		
	Model (IDL), Autoregressive Error Model (AR error)		
	Autocorrelation (Serial correlation), Tests for Autocorrelation (Correlogram, Lagrange-		
	Multiplier (LM) Test, and Durbin Watson Test)		
	Forecasting using AR(p) model and ARDL(p,q) model		
III	Regression with Time-series Data (Non-Stationary) : Concept of non-stationarity, Spurious regression,		
	Unit root test for non-stationarity, Dicky-Fuller Test for stationarity with intercept and		
	no trend, Dicky-Fuller test for stationarity with intercept and trend, Dicky-Fuller test		
	for stationarity with no intercept and no trend,		
	Cointegration, Dicky-Fuller test for cointegration,		
	Forecasting using Non-stationary time-series data		
	Practicals		
	1. Trend projection (linear)		
	2. Trend projection (exponential)		
	Smoothing of time-series data using Moving Averages		
	Smoothing of time-series data using exponential smoothing		
	5. Calculation of seasonal indexes and deseasonalization of time-series data		
	Forecasting using deseasonalized time-series data		
	7. Test for autocorrelation using Correlogram plot for stationary time-series		
	8. Test for autocorrelation using LM test for stationary time-series		
	9. Test for autocorrelation using Durbin-Watson test for stationary time-series		
	10. Forecasting using AR(1), AR(2), AR(3) model for stationary time-series		
	11. Forecasting using DL(1), DL(2), DL(3) model for stationary time-series		

12. Forecasting using ARDL(2,2), ARDL(2,3) model for stationary time-series	
13. Correlogram plot for non-stationary variables	
14. Illustration of spurious regression for non-stationary time-series data	
15. Dicky-Fuller test for stationarity (with intercept and no trend)	
16. Dicky-Fuller test for stationarity (with intercept and trend)	
17. Dicky-Fuller test for stationarity (with no intercept and no trend)	
18. Dicky-Fuller test for cointegration	
19. Forecasting using non-stationary time-series data	

EVALUATION:

The students will be evaluated on a continuous basis and broadly follow the scheme given below:

		Weight-age
А	Continuous Evaluation Component (Assignments / Quizzes /Class	20% (C.E.C.)
	Participation etc.)	
В	Internal Assessment (MCQ)	30% (I.A.)
С	End-Semester Practical Examination	50%
		(External Assessment)

SUGGESTED READINGS:

TEXT BOOKS:

Sr.No	Author/s	Name of the book	Publisher	Edition and Year
T-01	R. Carter Hill, William E. Griffiths, Guay C. Lim	Principles of Econometrics	John Wiley and Sons	5 th , 2018
T-02	William E. Griffiths, R. Carter Hill, Guay C. Lim	Using Eviews for Principles of Econometrics	John Wiley and Sons	5 th , 2019

REFERENCE BOOKS:

Sr.No	Author/s	Name of the book	Publisher	Edition and Year
R-01	David R. Anderson, Dennis J. Sweeney, Thomas A. Williams, Jeffrey D. Camm, James J. Cochran	Statistics for Business and Economics	Cengage Learning	13 th (revised), 2018