

Syllabus for Bachelor of Technology

Subject Code: 01MA1401 Subject Name: Complex Variable & Numerical Analysis B. Tech. Year - II (Semester - 4)

Objective of the Course : The subject aims to make the learner able to apply the knowledge of the Application of various Numerical Analysis methods in Engineering and real-world problems.

Credit Earned : 04

Course Outcome :

After successful completion of the course, it is expected that students will be able to,

- 1. Recognize the error in the number generated by the solution.
- 2. Compute solutions of algebraic and transcendental equations by numerical methods.
- 3. Apply methods of interpolation and extrapolation for prediction.
- 4. Use numerical methods and tools in the engineering problem-solving process.

Teaching and Examination Scheme :

Teaching Scheme			Credits	Examination Marks					
THEORY	TUTORIAL	PRACTICAL	С	Theory Marks			Practical Marks		Total
				ESE(E)	IA	CSE	Viva (V)	Term Work (TW)	Marks
3	2		5	50	30	20	25	25	150

Content :

Sr. No.	Content	Total Hrs.
1	Error Approximation and Roots of Equations Approximations and errors in computation, Approximate numbers, significant figures, rounding off numbers, types of errors and basic sources of errors in numerical computation, Bisection method, Method of false position, Secant method, Newton- Raphson method, Rate of convergence, Dominant Eigenvalues and Eigenvector of matrix by Power methods.	08
2	Numerical Integration Newton – cotes quadrature formula, trapezoidal rule, Simpson's rules, Weddle's rule, error bounds, and estimates of these rules, Gaussian quadrature formula.	06

Syllabus for Bachelor of Technology

	Interpolation and Curve Fitting:					
3	Finite Differences, Forward, Backward and Central operators, Interpolation	To be				
	by polynomials: Newton's forward, Backward interpolation formula,	covered				
	Gauss & Stirling's central difference formula,					
	Newton's divided and Lagrange's formula for unequal intervals.					
	Least squares method, Fitting of Linear, Quadratic, Exponential and					
	Logarithmic curves.					
	Numerical Solution of Ordinary Differential Equation					
4	Taylor series, Picard's method, Euler's and modified Euler, Runge - Kutta	08				
	method of 2 nd and 4 th order, Milne's predictor-corrector methods					
	Solution of System of Linear Equations Using Numerical Techniques					
5	Gauss elimination, Gauss elimination with partial pivoting, Gauss	07				
3	Jordan and LU-factorization methods, Indirect methods: Gauss-Seidel	07				
	and Jacobi's methods					
	Complex Variable					
	De Moivre's Theorem, Roots of a complex number, Logarithmic					
	function and complex exponent function, Limit, Continuity and Differentiability of					
	complex function, Analytic functions, Cauchy- Riemann equations, Necessary and					
6	Sufficient condition for analyticity, Properties of Analytic function, Laplace equation,					
0	Harmonic Conjugate functions,					
	Complex Integration:					
	Line Integral (contour integral) and its properties, Cauchy-Goursat Theorem, Cauchy					
	Integral Formula, Liouville Theorem (without proof), Maximum Modulus Theorem					
	(without proof)					
	Applications of Numerical Methods by Excel:	To be				
7	Some basic EXCEL commands, solution of equations using EXCEL for					
	Bisection Method, Secant Method and Newton Raphson Method.					
		Tutorial				
		hours				

Distribution of Theory Marks

R Level	U Level	A Level	N Level	E` Level	C Level
20	30	25	15	10	

Legends: R: Remember; U: Understand; A: Apply; N: Analyze; E: Evaluate; C: Create

List of Tutorials :

- 1. Theory and Example on roots of equations.
- 2. Theory and Example on Numerical Integration.
- 3. Theory and Example on Interpolation and curve fitting.
- 4. Theory and Example on Numerical solution of ordinary differential equation
- 5. Theory and Example on system of linear equation.

Department of Mechanical Engineering

Syllabus for Bachelor of Technology

Reference books :

- 1. S. D. Conte and Carl de Boor, Elementary Numerical Analysis- An Algorithmic Approach (3rd Edition), McGraw-Hill, 1980.
- C. E. Froberg, Introduction to Numerical Analysis (2nd Edition), Addison-Wesley, 1981
- 3. C. F. Gerald and P. O. Wheatley, Applied Numerical Analysis (5th Edition), Addison-Wesley, Singapore, 1998.
- 4. S. C. Chapra and R. P. Canale, Numerical Methods for Engineers, Tata McGraw Hill, 2003.
- 5. R. V. Churchill and J. W. Brown, Complex Variables and Applications (7th Edition), McGraw-Hill (2003)

List of Open Base Software / learning website :

- 1. <u>http://numericalmethods.eng.usf.edu</u>
- 2. http://mathworld.wolfram.com/
- 3. http://en.wikipedia.org/wiki/Mat