

Syllabus for Bachelor of Technology

Subject Code: 01ME1601 Subject Name: Dynamics of Machine - II B. Tech. Year - III (Semester - 6)

Type of course : Under Graduate

Prerequisite : Higher order ODE, PDE, and Kinematics of Mechanism

Rationale : Understanding the basic of vibration & balancing and analysis of vibration in mechanical system.

Course outcome :

After learning the course, the students will be competent

- 1. To analyse unbalance force and bearing reaction force in rotating mass and its effects.
- 2. To analyse unbalance force in reciprocating engine and its effects.
- 3. To analyse natural frequency of free undamped vibrating system and develop methods to overcome its ill effects.
- 4. To analyse natural frequency of free and forced damped vibrating system and measure to avoid its ill effects.
- 5. To study various vibration measurement technique.

Teaching and Examination Scheme :

Teaching Scheme		Credits	Examination Marks						
	Tutorial	Practical	С	Theory Marks			Practical Marks		T . (. 1
Theory				ESE(E)	IA	CSE	Viva (V)	Term Work (TW)	Marks
3	0	2	4	50	30	20	25	25	150

Content :

Sr. No.	Content				
1	Rotating Mass Balance: Understanding static and dynamic balancing, Investigation of effect of unbalance rotating mass (Single & Multi plane), Methods for measuring unbalance force & mass. Bearing reactions.				
2	 Balancing of Reciprocating Mass: Balancing of slider crank chain mechanisms, Modelling real system for static and dynamic analysis. Inertia force, disturbing force and torque, Balancing of Multi Cylinder Engines: Analysis of Multi Cylinder In-line Engines: Direct and Reverse crank method, optimized configuration of in- 				

Department of Mechanical Engineering

Syllabus for Bachelor of Technology

	line engine.						
	Balancing of Radial Engine:						
	Evaluation of V and radial engine, Analytical & Graphical methods.						
3	Fundamental of Mechanical Vibrations:						
	Vibration and oscillation, Reason for generation of vibration, Parameters of						
	Vibration - spring, mass, damper, Damper models, Motion - periodic, non-	- 1					
	periodic, harmonic, non- harmonic, Degree of freedom, static equilibrium						
	position, Vibration classification.						
	Free Undamped Single Degree of Freedom Vibration System: Longitudinal						
	transverse, torsional vibration system, Methods for formulation of differential						
	equations by Newton, Energy, and Rayleigh's Method,						
	Free Damped Single Degree of Freedom Vibration System:						
	Viscous damping, Under, Critically & Over damped System, Damping Factor,						
	Logarithmic decrement;						
4	Forced Vibration:						
	Undamped Forced vibrations, Damped Forced Vibration, Equivalent viscous						
	damping; Externally Applied forces due to unbalanced masses. Vibration						
	Isolation and Transmissibility: Force Transmissibility, Motion Transmissibility						
5	Vibration Measurement: Basic of vibration measurement and analysis Instruments						
	used: Vibrometer, velocity pickup, accelerometer, FFT analyzer.						

Distribution of Theory Marks

R Level	U Level	A Level	N Level	E` Level	C Level
10	20	25	25	10	10

Legends: R: Remember; U: Understand; A: Apply; N: Analyze; E: Evaluate; C: Create

List of Experiment :

- 1 Study and confirm relation between the period of oscillation and length of pendulum for simple.
- 2 Study and confirm relation between the period of oscillation of compound pendulums.
- 3 Experimental analysis of Free Un-damped longitudinal Vibration of single degree of freedom system
- Experimental analysis of Free Un-damped torsional vibration of single degree of freedom system
- 5 Experimental analysis of Free Un-damped torsional vibration of two rotor system
- 6 Experimental analysis of Damped torsional vibration
- 7 Balancing of rotating mass in different plane.
- 8 Experimental analysis of forced vibration
- 9 Experimental analysis of forced damped vibration
- 10 To verify Dunkerley's theorem for lateral vibration

Department of Mechanical Engineering

Syllabus for Bachelor of Technology

- 11 To find first few natural frequencies of a cantilever by impact test in virtual Lab
- 12 To determine critical speed of the shaft and study effect of shaft diameter and end conditions on the same.

Major Equipment :

- 1. Universal Vibration machine
- 2. Static and Dynamic balancing Apparatus
- 3. Whirling of shaft

Reference Books :

- 1. S S Rao, Mechanical Vibrations, Pearson.
- 2. R L Norton, Kinematics and Dynamics of Machinery, McGraw-Hill.
- 3. J. Uicker, Gordon R Penstock & J.E. Shigley, Theory of Machines and Mechanisms, Oxford.
- 4. V. P. Singh, Mechanical Vibration
- 5. R L Norton, Design of Machinery, McGraw-Hill.
- 6. A. G. Ambekar, Mechanical vibrations and noise engineering

List of Open-Source Software/learning website :

- 1) www.nptel.ac.in
- 2) www.coursera.org
- 3) www.edx.org