

Marwadi University Faculty of Diploma studies Information and Communication Technology

Subject Code: 09CT0604 Subject Name: RF and Microwave Communication Diploma Year – III (Semester VI)

Objective: The rationale behind this course is to understand RF and Microwave systems.

Credits Earned: 4 Credits

Course Outcomes: After learning this course, students should be able to,

- 1. Understand basic concepts and applications of microwave systems.
- 2. Analyze and solve problems related to microwave transmission lines.
- 3. Analyze and solve problems related to microwave waveguides.
- 4. Learn to apply use of various passive and active microwave components for different applications.
- 5. Understand working of microwave amplifier, oscillator, and mixer circuits.

Pre-requisite of course: Electromagnetic Theory.

Teaching and Examination Scheme

Teaching Scheme (Hours)			Theory Marks			Tutorial/ Practical Marks		Tetel	
Theory	Tutorial	Practical	Credits	ESE (E)	IA (M)	CSE (I)	Viva (V)	Term work (TW)	Total Marks
3	0	2	4	50	30	20	25	25	150

Contents:

Sr No	Course content	Total Hrs.
1	Introduction to Microwaves	03
	History of Microwaves, Microwave frequency bands, General applications	
	of Microwaves, Advantages of Microwaves, Microwave Propagation	
2	Mathematical model of Microwave Transmission	05
	Concept of Mode, Characteristics of TEM, TE and TM Modes, Losses associated with microwave transmission, Concept of Impedance in Microwave transmission	

Marwadi University Faculty of Diploma studies Information and Communication Technology

	mormation and Communication Techno	lugy				
3	Analysis of Microwave Transmission Lines and Waveguides	13				
	Transmission line equations & solutions, reflection and transmission					
	coefficient, standing wave and standing wave ratio, line impedance and					
	admittance, impedance matching, using stub line, skin effect, application of					
	smith chart in solving transmission line problems, Introduction to strip lines,					
	Micro strip lines, Rectangular and circular waveguides					
4	Microwave Network Analysis	05				
	Equivalent voltages and currents for non-TEM lines, Network parameters					
	for microwave circuits, Scattering Parameters					
5	Passive and Active RF and microwave Devices	13				
	Microwave Passive components: Directional Coupler, Power Divider,					
	Magic Tee, Hybrid ring, Wave-guide Corners, Bends, Twists, Attenuator,					
	Circulator, Isolator and Resonator.					
	Microwave Active components: Tunnel diode, Varactor diodes, Step					
	recovery diodes, Schottky Barrier diodes, PIN diodes, Gunn Diodes,					
	IMPATT and TRAPATT diodes, Parametric Amplifiers, Microwave					
	Transistors, Microwave oscillators and Mixers, Klystron, Magnetron					
6	Microwave Frequency Measurement: Wavelength, VSWR,	3				
	Attenuation and 'Q', Microwave Radiation Hazards: type and					
	protection from hazards					
	Total	42 hrs.				

References:

- 1. Sanjeev Gupta, Microwave Engineering, Khanna Pub.
- 2. Annapurna Das, Sisir K.Das- Microwave engineering, McGraw Hill
- 3. David. M Pozar, Microwave Engineering, Wiley
- 4. Robert A Collin, Foundations of Microwave Engineering, Wiley
- 5. Samuel Liao, Microwave devices and circuits, PHI

Suggested Theory distribution:

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Distribution of Theory for course delivery and evaluation							
Remember	Understand	Apply	Analyse	Evaluate	Create		
40%	40%	10%	10%	0%	0%		

Suggested List of Experiments:

1 Introduction and identification of microwave component.

2 Study of the characteristics of Klystron tube and to determine its electronic tuning range.

Marwadi University Faculty of Diploma studies Information and Communication Technology

3 Study of following characteristics of Gunn Diode

- 3.1 Output power and frequency as a function of voltage.
- 3.2 Square wave modulation through PIN diode.
- 4 To determine the frequency & wavelength in a rectangular waveguide working in TE10 mode.
- 5 Study of function of multi hole directional coupler by measuring the following parameters:
 - 5.1 Main line and auxiliary line SWR
 - 5.2 Coupling factor and directivity.
- 6 To determine the standing wave ratio and reflection coefficient.
- 7 To measure an unknown impedance with smith chart.
- 8 To measure SWR of ports, isolation and coupling coefficients of Magic Tee.
- 9 To measure Input VSWR, Insertion loss and isolation of isolator/ circulator
- 10 To measure resonant frequency of Cavity resonator.
- 11 To study and perform the square law behavior of a microwave crystal detector.

12 Introduction to spectrum analyzer and measurement of spectrum of microwave signal using the same.

Reference Materials:

- https://nptel.ac.in/courses/108/101/108101112/
- https://nptel.ac.in/courses/117/105/117105138/
- <u>https://www.udemy.com/course/rf-microwave-radio-transmission-theory-online-course-rahsoft-rahch200/</u>