

Marwadi University Faculty of Diploma studies Information and Communication Technology

Subject Code: 09CT0608 Subject Name: Sensor and IoT (SIoT) Diploma Year – III (Semester VI)

Objective: The rationale behind this course is to learn to understand working of sensor, sensor interfacing and develop IoT solutions.

Credits Earned: 4 Credits

Course Outcomes: After learning this course, students should be able to,

CO1: To understand the concept of IoT and its architecture.

CO2: Interfacing of various sensors with programmable boards

CO3: To write programs for various IoT applications.

CO4: Integration of various sensors and data transfer protocols.

CO5: To develop solutions for different topics in society by means of IoT.

Pre-requisite of course: Electromagnetic Theory.

Teaching and Examination Scheme

Teaching Scheme (Hours)			Theory Ma		Iarks	Tutorial/ Practical Marks		Total	
Theory	Tutorial	Practical	Credits	ESE (E)	IA (M)	CSE (I)	Viva (V)	Term work (TW)	Total Marks
3	0	2	4	50	30	20	25	25	150

Contents:

Sr No	Course content	Total Hrs.
1	Introduction to Internet of Things:	08
	Definitions, core concepts, related concepts, IoT reference models,	
	IoT architectures, challenges, IoT functional stack	
2	Sensors:	10
	Working principles, different types, selection of sensors for practical applications, Introduction to different types of sensors such as capacitive, resistive, temperature, humidity, pressure, ultrasonic,	
	gas, Hall effect, PIR, MEMS, Image, IR, Proximity, GPS and GSM module, Interfacing sensor with IoT hardware boards	

Marwadi University Faculty of Diploma studies

Information and Communication Technology

3	Communication devices and protocols: Bluetooth and BLE, Wifi, Zigbee, IPv6, 6LowPAN, LTE-M, RFID, NFC, LiDAR	08
4	Application layer: MQTT, CoAP, XMPP, Integrating internet services with interoperable data encoding with XML, JSON, CBOR, sensor markup language, lightweight web services for IoT	08
5	IoT application domains: Smart Cities, Smart Manufacturing, Smart Grid, Smart Buildings, Intelligent Transportation Systems, Healthcare	08
	Total	42 hrs.

References:

- 1. Q. F. Hassan, "Internet of Things A to Z: Technologies and Applications", IEEE Press, Wiley
- 2. D. Hanes, G. Salguerio, P. Grossetete, R. Barton, J. Henry, "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", CISCO Press
- 3. Randy Frank, Understanding Smart Sensors, ARTECH House
- 4. J. Holler, V. Tsiatsis, C. Mulligan, S. Karnouskos, S. Avesand, D. Boyle, "From Machine to Machine to Internet of Things", Academic Press, ELSEVIER
- 5. P. Raj, A. Raman, "The Internet of Things Enabling Technologies, Platforms, and Use Cases",

Suggested Theory distribution:

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Distribution of Theory for course delivery and evaluation							
Remember	Understand	Apply	Analyse	Evaluate	Create		
20%	30%	40%	10%	0%	0%		

Suggested List of Experiments:

- 1. To sense temperate and humidity using sensors interfaced with IoT hardware hoard
- 2. To detect presence using proximity sensor interfaced with IoT hardware board.
- 3. To detect distance of object using ultrasonic sensor interfaced with IoT hardware board.
- 4. To interface pressure sensor with IoT hardware board and read sensed data.
- 5. To read RFID tag using RFID reader interfaced with IoT hardware board.

Marwadi University Faculty of Diploma studies Information and Communication Technology

- 6. To control LED on IoT hardware board using Bluetooth module interfaced with it.
- 7. To get location data using GPS module interfaced with IoT hardware module on webpage.
- 8. To understand implementation of MQTT using ContikiOS.
- 9. To understand implementation of CoAP using ContikiOS.
- 10. To create IPv6 network and configure network stack using Cooja simulator.

Reference Materials:

- https://www.coursera.org/specializations/iot
- https://www.coursera.org/specializations/internet-of-things
- https://nptel.ac.in/courses/106/105/106105166/