

Syllabus for Bachelor of Technology

Subject Code: 01ME1404 Subject Name: Engineering Thermodynamics B. Tech. Year - II (Semester - 4)

Type of course : Core

Prerequisite : Nill

Rationale : Thermodynamics is the introductory course on Thermal Science and Engineering. It comprises the understanding of certain natural laws and energy interaction prominently heat and work transfer.

Course Outcome :

After completion of this course, student will be able to

- 1. Understand basic concepts of thermodynamics.
- 2. Apply the laws of thermodynamics to various processes.
- 3. Apply concepts of entropy and exergy to various processes.
- 4. Solve thermodynamic problems using steam table and molier charts.
- 5. Analyze air standard and power generation cycle and compare their performance.

Teaching and Examination Scheme :

Teaching Scheme			Credits	Examination Marks					
				Theory Marks			Practical Marks		
THEORY	TUTORIAL	PRACTICAL	С	ESE(E)	IA	CSE	Viva (V)	Term Work (TW)	l otal Marks
3	2		5	50	30	20	25	25	150

Content :

Sr. No.	Content			
1	Introduction: Concept of Continuum, Macroscopic and Microscopic approach, Control Volume, Thermodynamic System, Types of Systems, Surrounding, Universe, Boundaries, State, Point and Path Function, Thermodynamic Properties, Process, Cycle, Quasi – Static Process, Thermodynamic Equilibrium, Pure Substance, Vapour- Liquid-Solid Phase in a Pure Substance, Energy and Work Transfer.	04		
2	Laws of Thermodynamics: Zeroth law, First law for closed system, Internal energy - a property of system, PMM- I, Steady flow energy eqution, Application of SFEE: Nozzle, Diffuser, Boiler, Turbine, Pump, Heat Exchanger, Throttling process. Second Law: Limitations of first law, Thermal Energy Reservoir, Heat Engine, Heat	14		

Department of Mechanical Engineering

Syllabus for Bachelor of Technology

	Pump and Refrigerator, Kelvin- Planck and Clausius Statements and their					
	equivalence, PMM- II, Reversibility and Irreversibility, Carnot's theorem & its					
	corollary, Thermodynamic temperature Scale, Third Law of Thermodynamics.					
3	Entropy and Exergy analysis: Clausius Theorem, Entropy-A Property of System, Inequality of Clausius, Causes & types of Irreversibility, Condition for Reversibility, Entropy Change in Irreversible Process, Entropy Change in Various Thermodynamics Process, Principle of increase of entropy, Entropy Generation in Closed and Open System, Entropy and Disorderness. Concept of Exergy, Dead State, Available and Unavailable Energy, Exergy of a infinite source and finite Body, Exergy Destruction in Heat Transfer Process, Exergy of a Closed System and Steady Flow System, Guoy stodola theorem and its application, Second Law Efficiency.	10				
4	Vapour Power and Gas Power Cycle: Carnot cycle, Rankine Cycle, Comparison of Rankine and Carnot Cycle, Efficiency Calculation of Rankine Cycle, Mean Temperature of Heat Addition, Factors Affecting Efficiency of Rankine Cycle, Reheat, Regenerative, Reheat-Regenerative Cycle, Feedwater Heaters. Air standard Efficiency of Otto, diesel and dual cycle, Comparison of Otto, Diesel and Dual Cycle.	14				
5	Ideal and real Gas: Composition of gas mixture, molar analysis, gravimetric analysis, P-v-T behavior of gas mixture, ideal gas mixture,					

Distribution of Theory Marks

R Level	U Level	A Level	N Level	E` Level	C Level
20	30	25	15	10	

Legends: R: Remember; U: Understand; A: Apply; N: Analyze; E: Evaluate; C: Create

Reference books :

- 1. P.K.Nag, Engineering Thermodynamics, 6th edition, McGraw Hill Education, 2017.
- 2. R. K. Rajput, Engineering Thermodynamics, 5th edition, Laxmi Publications, 2019.
- 3. Y. A. Cengel and M. A. Boles, Thermodynamics an Engineering Approach, 9th edition, McGraw Hill Education, 2019.
- 4. C. Borgnakke and R. Sonntag, Fundamentals of Thermodynamics, 10th edition, John Wiley & Sons, 2019.
- 5. Holman J.P, Thermodynamics, 4th edition, McGraw Hill Education, 1988.
- 6. Jones and Dugan, Engineering Thermodynamics, 1st edition, PHI Learning Pvt. Ltd, 1995.
- 7. Krieth, Engineering Thermodynamics, 2nd edition, CRC Press, 1998.

List of Open Base Software / learning website :

Marwadi Chandarana Group

- 1. https://nptel.ac.in/courses/112103275
- 2. <u>https://swayam.gov.in/</u>
- 3. <u>https://www.coursera.org</u>

Department of Mechanical Engineering

Syllabus for Bachelor of Technology

Department of Mechanical Engineering