

Syllabus for Bachelor of Technology

## Subject Code: 01ME2401 Subject Name: Machine Design & Industrial Drafting B. Tech. Year - II (Semester - 4)

Type of course : Core

**Prerequisite :** Engineering Graphics, Fundamentals of Machine Design.

**Rationale :** The objective of this course is to introduce design concepts and procedures necessary to design and select a machine element.

#### **Course Outcome :**

After completion of this course, student will be able to

- 1. Understand the stresses in machine elements due to various types of loads.
- 2. Understand different theories of failure and its application for design of machine elements.
- 3. Design and analyze various joints and fasteners.
- 4. Design and analyze shaft, key and coupling.
- 5. Design and analyze lever and column for stresses and deflection.

#### **Teaching and Examination Scheme :**

| Teaching Scheme |          |           | Credits | Examination Marks |    |     |                 |                      |                |
|-----------------|----------|-----------|---------|-------------------|----|-----|-----------------|----------------------|----------------|
|                 |          |           |         | Theory Marks      |    |     | Practical Marks |                      | T - ( - 1      |
| THEORY          | TUTORIAL | PRACTICAL | С       | ESE(E)            | IA | CSE | Viva<br>(V)     | Term<br>Work<br>(TW) | Total<br>Marks |
| 4               |          |           | 4       | 50                | 30 | 20  |                 |                      | 100            |

#### **Content :**

| Sr.<br>No. | Content                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Total<br>Hrs. |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
|            | <b>Principal Stresses:</b><br>Introduction: Two-dimensional stress system. Evaluation of stresses in an inclined plane for members subjected to orthogonal stresses. Definition of principal plane, principal stresses, angle of obliquity, and resultant stress.<br>Principal Stress and Strain: Evaluation of Principal plane and principal stresses using analytical method. Analysis of Principal stresses and principal planes for two-dimensional stress system. Application of Mohr's circle and ellipse of stress. | 05            |
| 2          | <b>Design concepts of Mechanical Components:</b><br>Different theories of Failures and its limitation and application for Different theories<br>i.e., Distortion energy, Maximum Shear stress, Maximum Principal stress, Coulomb-<br>Mohr Theory, Factor of safety and its different parameters for selection, Selection of<br>theories of failures and Use of theories of failures; Contact stresses, Crushing and                                                                                                        | 06            |

# **Department of Mechanical Engineering**



Syllabus for Bachelor of Technology

|   | Bearing pressure.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3 | Design of mechanical joints:<br>Temporary joints:<br>Cotter and Knuckle joints: Design of Cotter and Knuckle Joints.<br>Screw and nut: Different types of thread for Single as well as Multiple threaded screw,<br>screw fastening and its types, Cap and Set screw, concept of uniform strength in bolt,<br>locking devices, Different Terms of Screw thread. Torque calculation for bolt<br>tightening.<br>Design of power screw:<br>Different terms used to describe power screw, Calculation of torque required for<br>lifting and lowering of Load, Efficiency of threads, Self-locking phenomenon, Co-<br>efficient of friction. | 10 |
| 4 | Design of mechanical joints:<br>Permanent joints:<br>Welded joints: Different types of welded joints and stress relieving methods in weld<br>joints, Strength of butt and fillet joint, Eccentric loading in the plane of weld, welded<br>joint subjected to bending and torsion.<br>Riveted joints: material selection and criteria for rivet joints and types of its failure,<br>riveted joints efficiency and strength calculation, strengthen method for riveted joints<br>like Caulking and Fullering, Longitudinal lap joint and Circumferential lap joint,<br>Eccentric loading condition in riveted joint.                     | 10 |
| 5 | <b>Design of shaft:</b><br>Design of solid and hollow circular shaft subjected to torque as well combined<br>loading; Design of shaft based on rigidity and stiffness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 10 |
| 6 | <b>Design of machine component:</b><br>Design of key: Saddle, Sunk, Woodruff, Square, and Flat. Design of coupling: Design and Concept of Couplings, Rigid coupling, Flexible coupling.                                                                                                                                                                                                                                                                                                                                                                                                                                                | 06 |
| 7 | <b>Design of lever:</b> Cranked, Bell crank, Foot, Rocker arm.<br><b>Design of column:</b> Type of loading compressive axial loading of columns and struts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 08 |
| 8 | Limit, Fit, Tolerance & Surface Roughness:<br>Basic terminology of GD & T, Allowance, Clearance, Maximum Metal Condition,<br>Least Metal Condition, Types of Fits with application, Basis of Limit System, BIS<br>system of fits and tolerances, Geometric tolerance, symbols and tolerance modifiers,<br>Different aspects of datums, Parameters of surface texture and qualifications, Relation<br>of surface roughness and various manufacturing processes, Surface Lay Indication.                                                                                                                                                 |    |

### **Distribution of Theory Marks**

| R Level | U Level | A Level | N Level | E` Level | C Level |  |
|---------|---------|---------|---------|----------|---------|--|
| 20      | 30      | 25      | 15      | 10       |         |  |

Legends: R: Remember; U: Understand; A: Apply; N: Analyze; E: Evaluate; C: Create

**Reference books :** 



**Syllabus for Bachelor of Technology** 

- 1. Design of Machine Elements, V B Bhandari, 5/e, McGraw Hill.
- 2. Machine Design: Fundamentals and Applications, P C Gope, 1/e PHI Learning.
- 3. Fundamentals of Machine Component Design, R C Juvinall, 5/e, Wiley.
- 4. Machine Design: An Integrated Approach, R L Norton, 6/e, Pearson.
- 5. Shigley's Mechanical Engineering Design, Richard Budynas, Keith Nisbett, 11/e, McGraw Hill.
- 6. Design of Machine Elements, Sadhu Singh, 5/e Khanna Publishers.
- 7. Design of Machine Elements, C. S. Sharma, Kamlesh Purohit, 1/e, PHI Learning.
- 8. Machine Design, Abdul Mubeen, 5/e, Khanna Publishers.

#### List of Open Base Software / learning website :

- 1. https://nptel.ac.in/courses/112/105/112105124/
- 2. <u>https://swayam.gov.in/</u>
- 3. <u>https://www.coursera.org</u>