

Syllabus for Diploma Engineering

Civil Engineering

Semester – II

Subject Name: Applied Mechanics

Subject Code: 09CI2103

Diploma Branches in which this subject is offered: Civil, Mechanical and Automobile Engineering

Objective: Objectives of introducing this subject at first year level in all the branches are:

- To study the identification of different types of forces, systematic evaluation of the effect of these forces, the behaviour of rigid bodies subjected to various types of forces, at the state of rest or motion of the particles.
- To create the base for the analysis of the structures for future semesters

Credits Earned: 4 Credits

Course Outcomes:

On the completion of the course student will be able to:

- Understand the principles of mechanics and their application to an engineering problem.
- Fundamental related to the subject will facilitate students to design structures, predict failure and understand the physical properties of materials in the higher semester.

Teaching and Examination Scheme

Teaching Scheme (Hours)			Condita	Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE	IA	CSE	Viva	Term work	Marks
3	0	2	4	50	30	20	25	25	150

Marwadi University Syllabus for Diploma Engineering Civil Engineering

Contents:

Unit	Topics	Contact hours	Weightage (%)
1	Introduction & System of Forces	12	24
	Introduction		
	 Scalar and Vector quantities 		
	System of units		
	Coplanar Concurrent forces		
	 Force, Force systems and Resultant 		
	 Composition and resolution of force 		
	 Lami's & Parallelogram Theorem 		
	Coplanar Non-Concurrent forces		
	 Concepts of Moment & Couple 		
	 Equilibrant, Equilibrium of forces 		
2	Centre of gravity and Centroid	07	18
	Concept of center of gravity		
	• Center of mass & Centroid		
	Centroid lines		
	Plane areas of volumes and bodies		
3	Friction	08	20
	• Introduction		
	• Types		
	• Applications		
	Simple frictionless rigid body assemblies		
	Rigid body assemblies including friction		
	• Friction for a body resting on horizontal plane &		
	on inclined plane		
4	Work, Power and Energy	07	18
	Work done		
	Force displacement diagram		
	• Torque		
	Work done by torque		
	Kinetic & Potential energy		
	Numerical Problems		
5	Simple Machine	08	20
	Principles of machines to evaluate Mechanical		
	Advantage		
	Velocity Ratio of simple machine		
	• Pulley blocks		
	• Draw Line sketch of different systems of Simple		
	and compound levers		
	Numerical Problems		
	• Laws of Machines		
	• Reversible & non reversible machines		

Marwadi University

Syllabus for Diploma Engineering

Civil Engineering

Suggested Theory distribution:

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Distribution of Theory for course delivery and evaluation					
Remember	Understand	Apply	Analyse	Evaluate	Create
35%	40%	15%	10%	0%	0%

Suggested List of Experiments:

Sr. No.	Name
1	To measure outputs from various equipment related to Engineering Mechanics.
2	Derive Law of machine using Worm and worm wheel.
3	Derive Law of machine using Single purchase crab.
4	Derive Law of machine using double purchase crab.
5	Determine resultant of concurrent force system applying Law of Parallelogram.
6	Determine resultant of concurrent force system applying Law of Polygon.
7	Determine resultant of concurrent force system graphically.
8	Prove Lami's theorem experimentally.
9	Determine support reactions for simply supported beam.
10	Obtain support reactions of beam using graphical method.
11	Determine coefficient of friction for motion on horizontal and inclined plane.
12	Determine centroid of geometrical plane figures.

Marwadi University

Syllabus for Diploma Engineering

Civil Engineering

Instructional Method:

- a. The course delivery method will depend upon the requirement of content and need of students. The teacher in addition to conventional teaching method by black board, may also use any of tools such as demonstration, role play, Quiz, brainstorming, MOOCs etc.
- b. The internal evaluation will be done on the basis of continuous evaluation of students in the laboratory and class-room.
- c. Practical examination will be conducted at the end of semester for evaluation of performance of students in laboratory.
- d. Students will use supplementary resources such as online videos, videos, ecourses, Virtual Laboratory

Text Books:

Applied Mechanics S. B. Junarkar & H. J. Shah-Charotar Publication

Reference Books:

- 1. Engineering Mechanics by G. S. Sawhney; PHI New Delhi
- 2. Mechanics of Materials: Beer and Johnston, TMH
- 3. Mechanics of Materials: Gere & Timoshenko; CBS Publishers & Distributors, Delhi
- 4. Mechanics of Materials: Hibbler R C; Pearson Education
- 5. Engineering Mechanics of Solids: Popov E.P; Prentice Hall of India, New Delhi