

Marwadi University Faculty of Diploma studies Information and Communication Technology

Subject Code: 09CT0609 Subject Name: Wireless Technologies Diploma Year - III (Semester VI)

Objective:

This course is to make students learn about fundamentals of wireless technologies and various wireless networking architectures. They will also go through significantly latest wireless technologies.

Credits Earned: 4 Credits

Course Outcomes: After learning this course, students should be able to,

- 1. Understand basic concepts of cellular communication systems.
- 2. Understand about basic principles behind radio resource management techniques such as power control, channel allocation and handoffs.
- 3. Evaluate different wireless communication systems and standards.
- 4. Compare different technologies used for wireless communication systems.
- 5. Explain the architecture, functioning, protocols, capabilities and application of various wireless communication systems.

Pre-requisite of course: Electromagnetic Theory.

Teaching and Examination Scheme

Teaching Scheme (Hours)				Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE (E)	IA (M)	CSE (I)	Viva (V)	Term work (TW)	Total Marks
3	0	2	4	50	30	20	25	25	150

Contents:

Sr No	Course content	Total Hrs.
1	Introduction to Cellular Communication	08
	Cellular cell concepts: cell structure, frequency reuse, cell splitting, cell	
	sectoring, Microcell zone concept, channel assignment, interference,	
	capacity, power control, Evolution of cellular communication systems:	
	overview and standards of 1G, 2G, 3G and 4G systems	

Marwadi University Faculty of Diploma studies

Information and Communication Technology

2	Global System for Mobile Communications (GSM):	09
	Services and Features, System Architecture, Radio sub systems, Channel	
	types, Example of a GSM call, Frame Structure, Signal Processing,	
	Protocols, Hand off, GPRS: Architecture, Protocols and Channels, security	
3	CDMA:	09
	Architecture of IS-95 CDMA system, CDMA forward channels, CDMA	
	reverse channels, Soft handoff, CDMA features, Power control in CDMA,	
	Performance of CDMA System, RAKE Receiver, CDMA2000 cellular	
	technology	
4	Wireless Personal Area Networks: Bluetooth Specifications, Protocols Stack, Security Issues, Advantages and Disadvantages, Application, UWB, Zigbee, wireless local area networks: IEEE 802.11, network architecture, medium access methods, WLAN standards, wireless metropolitan area networks: Wimax	08
5	GPS, wireless local loop, cordless phone, paging systems, RFID, Home RF, NFC, Software Defined Radio, Wireless Sensor Networks, Security issues and challenges in wireless networks	08
	Total	42 hrs.

References:

- 1. Theodore S. Rappaport, Wireless Communications: Principles and Practices, Pearson
- 2. William Stallings, Wireless Communication and Networks, Pearson
- 3. Sanjay Kumar, Wireless Communication: the fundamental and advanced concepts, River Publishers
- 4. Andrea Goldsmith, "Wireless Communications", Cambridge University Press
- 5. Raj Pandya, Mobile and Personal Communication Systems and Services, IEEE Press

Suggested Theory distribution:

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve effective teaching-learning process

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Distribution of Theory for course delivery and evaluation							
Remember	Understand	Apply	Analyse	Evaluate	Create		
40%	40%	10%	10%	0%	0%		

Marwadi University Faculty of Diploma studies Information and Communication Technology

Suggested List of Experiments:

- 1. To perform various AT commands using GSM SIGMA Trainer Kit.
- 2. To Interface GSM module with micro-controller 8051 for message transmission and reception to control any device.
- 3. Write a MATLAB program to simulate hard and soft handoff.
- 4. Write a MATLAB program to simulate multipath fading channels defined for GSM, CDMA and WiMAX standards.
- 5. Write a MATLAB program to parameterize and generate GSM uplink and downlink frames.
- 6. Write a MATLAB program to parameterize and generate GSM multi-frame structure and simulate power control and propagation loss effects.
- 7. Write a MATLAB program to plot spectrum of forward and reverse cdma2000 waveform.
- 8. Write a MATLAB program to plot BER for various fading channels.
- 9. Study full duplex Bluetooth communication using Simulink.
- 10. Write a MATLAB program to generate MAC frames for IEEE 802.15.4 standard (Zigbee).
- 11. Write a MATLAB program to model communication between two NFC devices.

Reference Materials:

- https://nptel.ac.in/courses/117/102/117102062/
- https://nptel.ac.in/courses/106/106/106106167/
- https://www.coursera.org/learn/wireless-communications