Marwadi U n i v e r s i t y Marwadi Chandarana Group

Bachelor of Technology

Civil Engineering

Railway Bridge & Tunnel Engineering 01CI0512

Objective of the Course:

- To understand fundamentals of planning and design of railway cross section.
- To learn different types of load acting on truss and arch bridges in accordance to codal provisions.
- To explore the fundamentals of methods of tunneling.

Credit Earned: 03

Student's learning outcomes:

After successful completion of the course, it is expected that students will be able to,

- 1. Identify the components of railway track: materials, sizes, function and importance.
- 2. Compare different methods of tunnelling.
- 3. Differentiate the theories, principles, and practices involved in bridge construction.
- 4. Examine the roles of components in diverging, merging, crossing, signaling and interlocking systems of railway tracks.
- 5. Design railway tracks using geometric principles for alignment, gradients, and curvature.

Teaching and Examination Scheme

Teaching Scheme (Hours)			C 1'	Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE (E)	IA (M)	CSE (I)	Viva (V)	Term Work (TW)	Marks
03	00	00	03	50	30	20	25	25	150

Detailed Syllabus

Sr. No.	Title of the unit		
1	Railway Engineering	20	
	Introduction: Development of railways in India, Permanent way and		
	railway track components, different gauges in India.		
	Rail: Function and types of rails, rail sections, conning of wheels,		
	defects in rails, creep of rails, rail joints and welding of rails.		
	Sleepers: Types of sleepers, spacing of sleepers and sleeper density, rail		
	fixtures and fastenings, ballast.		

Bachelor of Technology

Civil Engineering

Geometric design of railway track: Gradients, grade compensation	
speed of trains on curves, super elevation, cant deficiency, negative	
super elevation, curves, widening on curves.	
Points and crossings: Turnouts, switches, crossings, track junctions	s.
and its types: splits, diamond, gauntlet, scissor crossovers.	'
Railway stations & yards: Requirements, facilities, classifications	s.
platforms, and railway yards: their type, required equipment's in yards.	
Signaling and control system: Objectives, classification, interlocking	g
of signals and points.	5
2 Bridge Engineering	16
Introduction: Classification of bridges, investigations and planning	5,
choice and type of bridges, components of bridge, factors affecting sit	e
selection.	
Bridge hydrology: Design discharge, water way, afflux, scour depth	.,
economical span, general design specifications, loads acting on bridges	
live load specifications for road bridges as per IRC.	
Methods of erection of different types of bridges: River training	g
works and maintenance of bridges. Testing and strengthening of	-
bridges.	
3 Tunnel Engineering	06
<u>Introduction:</u> Necessity and advantages of a tunnel, classification of	f
tunnels, size and shape of a tunnel, alignment of a tunnel, portals and	d
shafts.	
Methods of Tunneling: Tunneling in hard rock and soft ground	l ,
Mucking, lighting and ventilation in tunnel, dust control and drainage of	f
tunnels.	
Total	42

Suggested Theory Distribution

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve an effective teaching-learning process

Distribution of Theory for course delivery and evaluation							
Remember	Understand	Apply	Analyze	Evaluate	Create		
5%	10%	35%	30%	15%	5%		

Instructional Method and Pedagogy:

- 1. At the start of course, the course delivery pattern, prerequisite of the subject will be discussed.
- 2. Lectures will be taken in class room with the use of multi-media presentations, white board—mix of both.
- 3. Attendance is compulsory in lectures and laboratory which carries a 5% component of the overall evaluation.

Marwadi U n i v e r s i t y Marwadi Chandarana Group

Bachelor of Technology

Civil Engineering

- 4. Minimum two internal exams will be conducted and average of two will be considered as a part of 15% overall evaluation
- 5. Assignments based on course content will be given to the students at the end of each unit/topic and will be evaluated at regular interval. It carries a weightage of 5%.
- 6. Surprise tests/Quizzes will be conducted which carries 5% component of the overall evaluation.

Recommended Study Material

- 1. Satish Chandra and M.M. Agrawal, Railway Engineering, Oxford University Press, New Delhi.
- 2. S.C. Saxena and S. P. Arora, A Text Book of Railway Engineering, Dhanpat Rai & Sons, New Delhi.
- 3. S.C. Rangwala, K.S. Rangwala and P.S. Rangwala, Principles of Railway Engineering, Charotar Publishing House, Anand.
- 4. S.P. Bindra, Principles and Practice of Bridge Engineering, Dhanpat Rai & Sons, New Delhi.
- 5. S.C. Saxena, Tunnel Engineering, Dhanpat Rai & Sons, New Delhi
- 6. D.J. Victor, Essential of Bridge Engineering, Oxford & IBH Pub. Co. Ltd. Mumbai.
- 7. IS 1893 (Part 1): 2002 Criteria for Earthquake Resistant Design of Structures, Part 1: General Provisions and Buildings
- 8. IS 1367 (Part 3): 2002 Technical Supply Conditions for Threaded Steel Fasteners, Part 3: Hexagon Head Bolts, Screws and Nuts of Product Grade C
- 9. IRS S-12: 2000 Specification for 52 Kg, 90 UTS Rails
- 10. IRS S-23: 2018 Specification for Fabricated Railway Turnouts and Special Trackwork
- 11. IRS T-11: 2018 Specification for Wooden Sleepers for Broad Gauge and Meter Gauge
- 12. IRS T-39: 2018 Specification for Elastic Rail Clips
- 13. IRS T-20: 2002 Specification for Rail Screws and Fish Bolts and Nuts for Wooden and Concrete Sleepers
- 14. IRS T-29: 2000 Specification for Steel Channel Sleepers
- 15. IRS T-45: 2006 Specification for Design and Manufacture of Axles for Freight Stock
- 16. IRS T-48: 2018 Specification for Fabricated Steel Fish Plates for Rails
- 17. IRS T-59: 2000 Specification for Insulated Rail Joints
- 18. IRS M-30: 2018 Specification for General Requirements for Rolling Stock Axles
- 19. RDSO/SPN/177: 2012 Manual for Standards and Specifications for Railway Stations
- 20. RDSO/SPN/197: 2018 Guidelines for Design and Construction of Private Sidings for Private Freight Terminals
- 21. IRC 78-2014: Standard Specifications and Code of Practice for Road Bridges, Section V Bearings applicable to railway bridges
- 22. IRS BG/T-13: 2011 Specification for Prestressed Concrete Sleepers for Broad Gauge and Metre Gauge
- 23. IRS BG/T-46: 2010 Specification for Design, Fabrication and Erection of Steel Girder Railway Bridges
- 24. IRS BG/T-57: 2011 Specification for Fabrication and Erection of Plate Girder Bridges

Marwadi U n i v e r s i t y Marwadi Chandarana Group

Bachelor of Technology

Civil Engineering

- 25. IRS BG/T-43: 2010 Specification for Fabrication and Erection of Steel Truss Railway Bridges
- 26. IRS BG/T-47: 2010 Specification for Fabrication and Erection of Bowstring Girder Railway Bridges
- 27. RDSO/SPN/192: 2009 Guidelines for the Design of Substructures of Railway Bridges and Other Structures
- 28. IRC 73-2015: Guidelines for the Design of Small Tunnels (up to 6m diameter)
- 29. IS 14481: 1997 Tunnel Lighting
- 30. IS 15667: 2006 Safety Provisions in Tunnels
- 31. IS 17131: 2018 Code of Practice for Design and Construction of Tunnels in Rocks
- 32. IS 19024 (Part 1): 2018 Earthquake Resistant Design and Construction of Buildings, Part 1: General Provisions and Buildings
- 33. RDSO/SPN/203: 2011 Guidelines for the Construction of Tunnels through Rock and Soil