

DEPARTMENT OF CIVIL ENGINEERING

Irrigation Engineering 01CI0620

Objective of the Course:

- Understand the irrigation methods along with their advantages and disadvantages
- Know the function of different hydraulic structures of the Irrigation System
- Determine the depth of irrigation
- Compute uplift pressure on bottom floor of weir
- Design the alluvial and non alluvial channel cross section.

Credit Earned: 04

Prerequisite: Basic knowledge of Hydrology parameters

Student's learning outcomes:

After successful completion of the course, it is expected that students will be able to,

- 1. Understand functions of hydraulic structure of irrigation system.
- 2. Calculate irrigation water requirement for various crops.
- 3. Determine the pressure at key points of sheet piles and floor thickness for a weir/barrage using Khosla's theory.
- 4. Compute forces acting on the gravity dam.
- 5. Design of the lined and unlined irrigation canal using Manning's equation, Kennedy's and Lacy's theory.

Teaching and Examination Scheme

Teaching Scheme (Hours)			Credits	Theory Marks			Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE (E)	IA (M)	CSE (I)	Viva (V)	Term Work (TW)	Marks
03	01	00	04	50	30	20	25	25	150

Detailed Syllabus

Sr. No.	Title of the unit		
1	Introduction	10	
	1.1 Definition, Necessity, Scope, Benefits, and Ill Effects of Irrigation,1.2 Types of irrigation schemes, Social and environmental considerations,1.3 Irrigation development in India.	3	
	1.4 Water Requirement of Crops- Duty and delta relation, Soil-water- plant relation- field, capacity, wilting point, available water, Soil moisture extraction pattern, Frequency of irrigation, Consumptive	3	

DEPARTMENT OF

CIVIL ENGINEERING

use.		
1.5 Principal Indian crops, Gross command area	, Culturable command 2	
area, Intensity of irrigation, Irrigation require	ements,	
1.6 Introduction to various methods of application	on of irrigation water, 2	
Irrigation efficiency, assessment of irrigation	water	
2 Diversion Work; Storage and Outlet Works	12	2
2.1 Diversion Works: Different stages of a	river and their flow 02	,
characteristics, Weir and barrages,		_
2.2 Various parts of a diversion head work an		
gradient, Principles of weir design on permeab	le formations -Bligh's 04	1
creep theory and Khosla's theory		
2.3 Storage and Outlet Works: Types of earther	n dams, Gravity dams, ₀₄	1
Forces acting on a gravity dam, Rock-fill dams,		
2.4 Spillways, Types of spillways, Spillway	σ s gates, and energy 02	2
dissipation works.		
3 Distribution works	10)
3.1 Types of irrigation canals, contour canal, ric	lge canal, side sloping 02	2
canals, canal alignment, Types of channel	1 (1 011)	
3.2 Canal sections-filling, cutting, partial cutting		l
Balanced depth, Canal FSL, Capacity factor and		
3.3 Losses of canal water, Silting, and scouring of		
3.4 Method of design of alluvial and non alluvi		ł
3.5 Silt theories, Lining of irrigation channel, T	Types of lining, Design 02)
of lined canal.		
4 Regulating and Cross Drainage Works	06	Ó
4.1 Cross drainage works, Types of cross drainage	age works, selection of 02	,
suitable type of CD works		
4.2, Necessity and location of canal fall, Types	of Canal falls, Canal 01	l
escapes,		L
4.3 Head regulator and Cross regulator, Silt eje)
Parshall flume, Irrigation outlets, and types of outlets.		
5 Miscellaneous Topic	04	1
5.1 Water logging causes and effect, remedial me		1
5.2 Drainage principles and practice, Land Recla	mation	
	Total 42	2

Suggested Theory Distribution

The suggested theory distribution as per Bloom's taxonomy is as follows. This distribution serves as guidelines for teachers and students to achieve an effective teaching-learning process

Distribution of Theory for course delivery and evaluation					
Remember	Understand	Apply	Analyze	Evaluate	Create
5%	20%	45%	10%	10%	10%

DEPARTMENT OF

List of Assignments/Tutorials

Sr. No	Topic name		
1	Compute depth of water stored in the root zone		
2	Determine frequency of irrigation		
4	Calculate Duty and Delta for crops		
5	Figureout capacity of reservoir for different crops grown in the command area		
6	Design non allucial channel section		
7	Design most economical Channel section		
8	Design alluvial channel using kannedy's theory when Bed slope given		
9	Design alluvial channel using kannedy's theory when B/D ratio given		
10	Design alluvial channel using Lacy's theory		
11	Design lined channel section		
12	Design weir using bligh's theory		
13	Compute uplift pressure on key points of the bottom floor of weir/barrage using Khosala's specific case 1,2		
14	Compute uplift pressure on key points of the bottom floor of weir/barrage using Khosala's specific case 3 and exit gradient		

Instructional Method and Pedagogy:

- 1. Prerequisites of the course and its pattern shall be discussed at the commencement of the course.
- 2. Lectures shall be conducted in the classroom using various teaching aids.
- 3. Presence in all academic sessions is mandatory which shall carry 5% marks of the total internal evaluation.
- 4. A minimum of two internal exams will be conducted and an average of two will be considered as a part of a 15% overall evaluation.
- 5. At the end of each unit/topic, an assignment based on the course content shall be given to the students which shall carry 5% weightage for timely completion and submission of the assigned work.
- 6. The assignments/tutorials/technical visits are planned in such a way that they cover the practical aspects of the course contents.

Recommended Study Material

Reference Books:

- 1. Irrigation & Water Power Engineering Dr. B.C.Punmia & B.B.Pande, Laxmi Publications, (P)Ltd, New Delhi
- 2. Irrigation, Water Resources & Water Power Engineering Dr. P.N.Modi, Standard BookHouse, Delhi
- 3. Irrigation, Water Power & Water Resources Engineering Dr. K.R.Arora Standard Publishers Distributors, Delhi
- 4. Irrigation Engineering and Hydraulic Structures S.K.Garg, Khanna Publishers, Delhi
- 5. Irrigation Engineering, S.K. Mazumder, Galgotia Publications Pvt Ltd., New Delhi.

DEPARTMENT OF

CIVIL ENGINEERING

