

DEPARTMENT OF CIVIL ENGINEERING

Introduction to Python Programming 01CI0624

Objective of the Course:

- To acquaint students with the basics of python programming and its functions.
- To understand the reading from and writing to I/O files in Python.
- To Explore common data structures, decision making and loops in Python.
- To develop various application and programs for solutions of problems related to civil engineering.

Credit Earned: 04

Prerequisite: Introduction to Programming

Students learning outcomes:

After successful completion of the course, it is expected that students will be able to,

- 1. Understand Python syntax fundamentals, Python variable types and Python control flow statements.
- 2. Demonstrate proficiency in effectively managing strings, functions, and lists within the Python programming context.
- 3. Apply commonly used operations related to file systems, showcasing competence in file handling.
- 4. To Compare Pandas and NumPy libraries for performing the scientific computing.

Teaching and Examination Scheme

Те	eaching Sch (Hours)	eme	Credits	Т	heory	Marks	Tutorial/ arks Practical Marks		
Theory	Tutorial	Practical	Credits	ESE (E)	IA (M)	CSE (I)	Viva (V)	Term Work (TW)	Marks
03	00	02	04	50	30	20	25	25	150

Detailed Syllabus

Sr No.	Title of the unit	Number of hours				
1	Basics of Python	14				
	1.1 Introduction to Python: Getting Started with Python					
	Programming, Overview of Python's significance in	04				
	programming and its application in civil engineering.					

DEPARTMENT OF

CIVIL ENGINEERING

	Total	42	
	Plots.		
	Greek symbols, Structure of matplotlib, Contour and Vector Field	04	
	Logarithmic Plots, Plots with multiple axes, Mathematics and		
	3.6 Plotting: An Interactive Session with PyPlot, Basic Plotting,		
	Grouping and aggregation operations in Pandas.		
	structures, Extracting information from Pandas Data Frames,	V I	
	Understanding and exploring Pandas Series and Data Frame	04	
	Pandas, Reading data from files into Pandas Data Frames,		
	3.5 Data Manipulation and Analysis with Pandas: Introduction to		
	solving numerical integration with SciPy.	03	
	numerical techniques for solving nonlinear equations 3.4 Numerical Integration and ODE Solving: Understanding and		
	linear algebra operations, solving systems of linear equations,	03	
	3.3 Linear Algebra and Nonlinear Equations: Utilizing SciPy for	02	
	Exploring special functions and random numbers generation		
	extraction, Matrix operations and linear algebra using NumPy,	03	
	manipulation in NumPy, Slicing and indexing arrays for data	03	
	3.2 Array Manipulation and Operations: Advanced array		
	arrays and basic operations in NumPy.		
	Computing, Installation and setup of NumPy and SciPy, Creating	03	
	3.1 Basics of NumPy and SciPy: Introduction to Numerical		
3	Scientific Computing Using Python & Data Visualization	20	
	files, Practical Exercises and Illustrative Programs.	02	
	2.4 File Operations: Understanding file input/output operations, Handling Different File Types, Utilizing text, CSV, and binary	02	
	using functions, module external packages. 2.4 File Operations: Understanding file input/output operations		
	modules, Importing and leveraging external packages, applications	03	
	2.3 Importing and Using Modules: Organizing code using external	02	
	Skills for working with lists, tuples, dates, times, and dictionaries.		
	2.2 Advanced Function Techniques: Variable scope and referencing,	02	
	organization, Creating and implementing custom functions.	U I	
	2.1 Defining Custom Functions: The role of functions in code	01	
2	Python Functions, Modules and File Operations	08	
	dictionary manipulation, Visualizing data & plotting techniques.		
	continue, pass), Integrating built-in functions for list, set, and		
	Nested loops, Infinite loops, and loop control statements (break,	3.0	
	Employing For loops for efficient sequence traversal, Use of	06	
	effective decision-making, while loops for iterative tasks,		
	1.3 Decision Making and Loops: Logical decisions with if, ifelse, and elif statements, incorporating Boolean expressions for		
	applications of operators in list, tuple, and string operations.		
	Logical, Membership, Identity, and Bitwise operators, Practical		
	computations with Arithmetic, Assignment, Comparison,	01	
	Utilizing Python's operators for various tasks, Performing	04	
	their role, exploring fundamental data types: int, float, str, bool,		
	1 0		

DEPARTMENT OF

CIVIL ENGINEERING

List of Experiments

Sr. No	Topic name		
1	Introduction to Jupyter Notebook and python script in CMD.	2	
2	Create programs to understand how loops and conditions work in Python.	4	
3	Develop programs to grasp the concepts of functions and working with variables.	4	
4	Explore handling text and creating lists in Python through practical exercises.	2	
5	Learn how to read from and write to files in Python, understanding file operations.	4	
6	Get an introduction to basic data analysis concepts using Python.	4	
7	Learn to create simple visualizations, like charts and graphs, to understand data better.	4	
8	Understand the use of popular Python libraries like NumPy and Pandas for data manipulation.	4	

Suggested Theory Distribution

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve an effective teaching-learning process

Distribution of Theory for course delivery and evaluation						
Remember	Understand	Apply	Analyze	Evaluate	Create	
5%	20%	30%	25%	10%	10%	

Instructional Method and Pedagogy:

- 1. At the start of course, the course delivery pattern, and prerequisite of the subject will be discussed.
- 2. Lectures will be taken in class room with the use of multi-media presentations, white board—mix of both.
- 3. Attendance is compulsory in lectures and laboratory which carries a 5% component of the overall evaluation.
- 4. Minimum two internal exams will be conducted and average of two will be considered as a part of continuous evaluation
- 5. Assignments based on course content will be given to the students at the end of each unit/topic and will be evaluated at regular interval. It carries a weightage of 5%.
- 6. Surprise tests/Quizzes will be conducted which carries 5% component of the overall evaluation.
- 7. The course includes a laboratory, where students have an opportunity to build an appreciation for the concepts being taught in lectures.

FACULTY OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF

Recommended Study Material

- 1. Gowrishankar S, Veena A, "Introduction to Python Programming", 1st Edition, CRC Press/Taylor & Francis, 2018. ISBN-13: 978-0815394372
- 2. Mark Summerfield, "Programming in Python 3: A Complete Introduction to the Python Language", Pearson Education
- 3. Zed A. Shaw, "Learn Python the Hard Way: A Very Simple Introduction to the Terrifyingly Beautiful World of Computers and Code, 3rd edition", Adisson-Wesley
- 4. Erik Westra, "Modular Programming with Python: introducing modular techniques for building sophisticated programs using Python", Packt Publishing
- 5. David Love, "Tkinter GUI Programming by Example", Packt Publishing Ltd.
- 6. John Hunt "Advanced Guide to Python 3 Programming", Springer.

Web Links

- 1. https://docs.spyder-ide.org/
- 2. https://wiki.python.org/moin/BeginnersGuide
- 3. https://www.programiz.com/python-programming