

# DEPARTMENT OF CIVIL ENGINEERING



# Computational Methods in Water Resources Engineering 01CI0718

### **Objective of the Course:**

- To provide an overview of computation techniques in water resources engineering.
- To develop a model of surface & subsurface water resources system.
- To introduce modern computational methods in water resources engineering.
- To make aware with different software used in modeling of WRS.

Credit Earned: 03

Prerequisite: Basics of Water Resources Engineering, Advanced Engineering Mathematics

# **Student's learning outcomes:**

After successful completion of the course, it is expected that students will be able to,

- 1. Discover various computation methods in water resources engineering.
- 2. Rate modeling concepts in various water resources systems.
- 3. Develop a model for surface water resources system and Irrigation engineering.
- 4. Analyze the water distribution system using suitable software.
- 5. Appraise artificial intelligence in the water resources system.

#### **Teaching and Examination Scheme**

| Teaching Scheme (Hours) |          |           | C 1'    | Theory Marks |           |         | Tutorial/<br>Practical<br>Marks |                      | Total |
|-------------------------|----------|-----------|---------|--------------|-----------|---------|---------------------------------|----------------------|-------|
| Theory                  | Tutorial | Practical | Credits | ESE<br>(E)   | IA<br>(M) | CSE (I) | Viva<br>(V)                     | Term<br>Work<br>(TW) | Marks |
| 03                      | 00       | 00        | 03      | 50           | 30        | 20      | 25                              | 25                   | 150   |



# DEPARTMENT OF CIVIL ENGINEERING



# **Detailed Syllabus**

| Sr.<br>No | Topic name                                           | Hours |
|-----------|------------------------------------------------------|-------|
| 1         | Introduction                                         | 04    |
|           | 1.1 Introduction and definition of numerical methods | 02    |
|           | 1.2 Solution techniques                              | 02    |
| 2         | Modeling the Water Resources System                  | 12    |
|           | 2.1 Concepts of modeling                             | 02    |
|           | 2.2 Overview of computer model: Surface hydrology    | 02    |
|           | 2.3 Subsurface hydrology modeling                    | 02    |
|           | 2.4 Cropping Patterns Modeling                       | 02    |
|           | 2.5 Multipurpose water release modeling              | 02    |
|           | 2.6 Hydropower modeling                              | 02    |
| 3         | Computing Techniques                                 | 12    |
|           | 3.1 Numerical methods                                | 02    |
|           | 3.2 Finite difference and finite element method      | 02    |
|           | 3.3 Application in Surface Water Modeling            | 02    |
|           | 3.4 Application in Subsurface Water Modeling         | 02    |
|           | 3.5 Solute transport problems                        | 02    |
|           | 3.6 Pipe network analysis                            | 02    |
| 4         | Software Learning                                    | 10    |
|           | 4.1 Introduction of HEC-RAS and Application          | 02    |
|           | 4.2 Introduction of SWAT and Application             | 02    |
|           | 4.3 Introduction of LOOP and Application             | 02    |
|           | 4.4 Introduction of MADFLOW                          | 04    |
| 5         | Modern Computation Method                            | 04    |
|           | 5.1 AI in Irrigation Engineering                     | 02    |
|           | 5.2 AI in water resources management                 | 02    |
|           | TOTAL                                                | 42    |

# List of Assignments/Tutorials

| Sr. No | Topic name                                            |  |  |  |
|--------|-------------------------------------------------------|--|--|--|
| 1      | Introduction of Numerical Methods                     |  |  |  |
| 2      | Computation methods in water resources engineering    |  |  |  |
| 3      | Modeling for Hydrology and Water Resources Management |  |  |  |
| 4      | Modeling of WR system using Software.                 |  |  |  |
| 5      | AI emerging in Water Resources Management.            |  |  |  |

# FACULTY OF ENGINEERING & TECHNOLOGY

#### **DEPARTMENT OF**





## **Suggested Theory Distribution**

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve an effective teaching-learning process

| Distribution of Theory for course delivery and evaluation |            |       |         |          |        |  |  |
|-----------------------------------------------------------|------------|-------|---------|----------|--------|--|--|
| Remember                                                  | Understand | Apply | Analyze | Evaluate | Create |  |  |
| 5%                                                        | 20%        | 45%   | 10%     | 10%      | 10%    |  |  |

### **Instructional Method and Pedagogy:**

- 1 Prerequisites of the course and its pattern shall be discussed at the commencement of the course.
- 2 Lectures shall be conducted in the classroom using various teaching aids.
- 3 Presence in all academic sessions is mandatory which shall carry 5% marks of the total internal evaluation.
- 4 A minimum of two internal exams will be conducted and an average of two will be considered as a part of a 15% overall evaluation.
- 5 At the end of each unit/topic, an assignment based on the course content shall be given to the students which shall carry 5% weightage for timely completion and submission of the assigned work.
- 6 The assignments/tutorials/technical visits are planned in such a way that they cover the practical aspects of the course contents.

### **Recommended Study Material**

- 1. Chow, V.T., Maidment, D.R., Mays. L.W., "Applied Hydrology", McGraw Hill.
- 2. Reddy, J. N., "An Introduction to Finite Element Method", Tata McGraw-Hill.
- 3. Niyogi, P., Chakrabarty, S. K., Laha, M. K., "Introduction to Computational Fluid Dynamics", Pearson Education.
- 4. Vedula S. and Majumdar P.P. "Water Resources Systems: Modelling Techniques and Analysis", Tata MCgraw Hill Publishing Company ltd, New Delhi
- 5. Chapra, steven C. Canale, Raymond P. "Numerical Methods for Engineer", Tata MCgraw Hill Publishing Company Ltd, New Delhi.
- 6. Jain, M. K.; Iyernger, S.R. & Jain R. K. "Numerical Methods for scientific and Engineering Computational, 6<sup>th</sup> ed. New International (P) ltd.