

DEPARTMENT OF CIVIL ENGINEERING

Modern Transportation System 01CI1707

Objective of the Course:

- To gain a deep understanding of the dynamics of transportation within urban environments, including factors such as population density, land use patterns, economic activities, and demographic trends.
- To explore sustainable transportation solutions aimed at mitigating the negative impacts of transportation on the environment and society.
- To encourage interdisciplinary perspectives by incorporating insights from fields such as urban planning, engineering, economics, environmental science, sociology, and public policy.

Credit Earned: 04

Student's learning outcomes:

After successful completion of the course, it is expected that students will be able to,

- 1. Specify key concepts related to urbanization.
- 2. Analyze various transportation survey data with proper sample size, accuracy and consistency checks.
- 3. Evaluate transportation data using appropriate analytical and techniques.
- 4. Develop optimal bus route network design and scheduling.

Teaching and Examination Scheme

Te	eaching Sch (Hours)	eme	Credits	Т	heory l	Marks	Tutorial/ Practical Marks		Total
Theory	Tutorial	Practical	Credits	ESE (E)	IA (M)	CSE (I)	Viva (V)	Term Work (TW)	Marks
03	01	00	04	50	30	20	25	25	150

Detailed Syllabus

Sr. No	Topic name	Hours
1	Urban Mass Transportation System	06

DEPARTMENT OF CIVIL ENGINEERING

	1.1 Urban transit problems, travel demand, types of transit systems, public, private, para-transit transport, mass and rapid transit systems, BRTS and Metro rails.	04
	1.2 Capacity, merits and comparison of systems, coordination, types of coordination	02
2	Introduction to Land Use Planning Models, Land Use and Transportation Interaction.	08
	2.1 The transportation study area definition; division into traffic zones; network identification and coding	04
	2.2 Types of trips, characteristics of various surveys; home interview; roadside survey mass transit and intermediate public transport surveys; sampling and expansion factors; accuracy checks, screen line checks, and consistency checks.	04
3	Travel Demand Modeling	15
	3.1 Trip generation-zonal regression and category analysis, Trip distribution-growth factor models, gravity model, opportunity models, and Desire line diagram. Modal split analysis-trip end.	10
	3.2 Trip interchange models, logit models, Trip assignment techniques choice, diversion curves, shortest path algorithms, all-or-nothing assignment, capacity restraint models and Direct demand models.	05
4	Scheduling and Route Network Design	13
	4.1 Scheduling: Component, procedure and patterns, bus & crew scheduling, fleet requirement	03
	4.2 Route network design: Corridor identification, route system, the capacity of transit lines, the process for improving transit line capacity	03
	4.3 Bus Station Design: Bus-Station Interface, Station Layout and Size, Distance between Stations, Architectural Features, Terminal Design	03
	4.4 Universal Accessibility for Corridor: Footpaths, Pedestrian Infrastructure, Passenger Access, Station Ramps, Bus Interior, Bus Stops on Service Extensions.	04
	TOTAL	42

List of Tutorials:

Sr. No	Topic name	Hours
1	Examples to determine trip generation of a network	03
2	Examples to determine trip distribution of the selected study area	03
3	Examples to determine modal split of the particular flow	03
4	Examples to determine route assignment	03
5	Examples to determine passenger & vehicular capacity of mass transportation system	02
	TOTAL	14

DEPARTMENT OF CIVIL ENGINEERING

The suggested theory distribution as per Bloom's taxonomy is as per follows. This distribution serves as guidelines for teachers and students to achieve an effective teaching-learning process

Distribution of Theory for course delivery and evaluation							
Remember	Understand	Apply	Analyze	Evaluate	Create		
5%	10%	30%	30%	15%	10%		

Instructional Method and Pedagogy:

- 1 Prerequisite of the course and its pattern shall be discussed on the commencement of the course.
- 2 Lectures shall be conducted in class room using various teaching aids.
- 3 Presence in all academic sessions is mandatory which shall carry 5% marks of the total internal evaluation.
- 4 At the end of each unit/topic an assignment based on the course content shall be given to the students which shall carry 5% weightage for timely completion and submission of the assigned work.

Recommended Study Material:

Reference Book:

- 1. Khisty, C J., Transportation Engineering An Introduction, Prentice-Hall, NJ
- 2. S.C. Saxena, Traffic Planning and Design, Dhanpat Rai Pub., New Delhi.
- 3. Partho Chakraborty and Animesh Das, Principles of Transportation Engineering, PHI
- 4. C. S. Papacostas, Fundamentals of Transportation System Analysis, PHI.

Text Book:

1. Kadiyali L.R., Traffic Engineering and Transport Planning, Khanna Publishers.

Web Links

• https://onlinecourses.nptel.ac.in/noc21_ce35/preview