



• **Sem.** :3

■ Subject Code : 05BC1303

Subject : Data Structure

Course Objectives :

1. To impart a thorough understanding of linear data structures such as stacks, queues and their applications.

- 2. To impart a thorough understanding of non linear data structures such as trees, graphs and their applications.
- 3. To impart a thorough familiar with writing recursive methods.
- 4. To design and implement various data structure algorithms.
- 5. To introduce various techniques for representation of the data in the real world.

Prerequisites : Functional Knowledge of c programming language

| Unit<br>No | Topics Covered                                                                                                                                                                                                                                           | No of<br>lectures<br>required |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| 1          | Introduction of data structure: Introduction of data and data type, introduction of data structure, primitive and non-primitive data structure, Define Complexity of Data structure – Time and Space complexity, best case, worst case and average case. | 6                             |
| 2          | Stacks and Queues:  Stack – introduction, operations, applications of stack recursion and polish notation Queue – introduction, types of queue, simple queue and its operations, circular queue and its operations, real life applications of queue      | 10                            |
| 3          | Linked List: Introduction, types of linked list – singly, doubly and circular, stack and queue using linked list.                                                                                                                                        | 12                            |
| 4          | Tree: Basic terminologies, M-ary tree, binary tree – array and linked representation, operations and traversal, conversion of general tree to binary tree, threaded binary tree, binary search tree                                                      | 12                            |





| 5 | Graph :                                                          | 10 |
|---|------------------------------------------------------------------|----|
|   | Basic terminologies, representations of graph – adjacency matrix |    |
|   | and adjacency list, BFS and DFS traversal                        |    |

#### Course Outcomes:

- Compare different data structures. Pick an appropriate data structure for a design situation.
- Use appropriate data structures like arrays, linked list, stacks and queues to solve real world problems efficiently.
- 3. Represent and manipulate data using nonlinear data structures like trees and graphs to design algorithms for various applications.
- 4. Implement operations like searching, insertion, and deletion, traversing mechanism etc. on various data structures.
- 5. Determine and analyze the complexity of given Algorithms.

#### Course Outcomes – Program Outcomes Mapping Table :

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|
| CO1 | Н   | Н   | L   | -   | M   | -   | -   | L   | Н   | -    | Ι    |
| CO2 | Н   | Н   | L   | -   | M   | -   | -   | -   | Н   | -    | М    |
| CO3 | Н   | Н   | L   | -   | M   | -   | -   | -   | Н   | -    | М    |
| CO4 | Н   | Н   | L   | -   | L   | -   | -   | -   | Н   | -    | М    |
| CO5 | Н   | Н   | L   | -   | Н   | -   | -   | L   | Н   | -    | Н    |

#### Text Book:

1. Reema Thareja. "Programming in C", Oxford University Press.

#### Reference Books :

- 1. "Introduction to Algorithm", Cormen, Leiserson, Rivest, Stein, , PHI (2003), 2nd Edition,
- 2. "Design and Analysis of Algorithms" Parag Dave & Himanshu Dave, Pearson Education (2008).
- 3. "Data Structures using C", A. K. Sharma, Pearson Education (2011).
- 4. "Data Structures: A Pseudo-code Approach with C", Gilberg & Forouzan, , Cengage Learning.
- "Fundamentals of Data Structures in C", Horowitz, Sahni, Anderson-Freed, University Press (2nd edition-2007)
- 6. "Data Structures Using C & C++", Tenenbaum, PHI. (Mention atleast 3 reference books)





#### Web References :

- 1. https://www.geeksforgeeks.org/data-structures/
- 2. https://www.javatpoint.com/data-structure-tutorial

#### App References:

- 1. Data Structures and Algorithms offline Tutorial ONAN Mobile Software
- 2. Data Structure Using C Super Dream

#### Syllabus Coverage from text /reference book & web/app reference:

| Unit No | Chapter Numbers         |
|---------|-------------------------|
| 1       | Chapter-2               |
| 2       | Chapter-7 and Chapter-8 |
| 3       | Chapter-6               |
| 4       | Chapter-9               |
| 5       | Chapter-13              |





## **PRACTICALS**

| Unit |                                                                                 |  |  |  |
|------|---------------------------------------------------------------------------------|--|--|--|
| No   | List of Practicals                                                              |  |  |  |
| 1    | 1.1 Create an array of size 10, input values and print the array, and search an |  |  |  |
| '    | element in the array.                                                           |  |  |  |
|      | 1.2 Create an array of size 10, input values and display sum and average of all |  |  |  |
|      | elements in the array.                                                          |  |  |  |
|      | 1.3 Create arrays A, B and C of size 3, perform C = A + B.                      |  |  |  |
|      | 1.4 Create arrays A, B of size 3, C of size 6, merge A and B into C.            |  |  |  |
|      | 1.5 Create an array of size 10, find the largest value from the array.          |  |  |  |
|      | 1.6 Insert an element into the array at user defined position.                  |  |  |  |
|      | 1.7 Delete an element from the array from user defined position.                |  |  |  |
|      | 1.8 Sort the array into ascending order.                                        |  |  |  |
|      | 1.9 Sort the array into descending order.                                       |  |  |  |
|      | 1.10 Write a program to multiply two matrices.                                  |  |  |  |
|      | , ,                                                                             |  |  |  |
| 2    | 2.1 Implement stack using array with following operations:                      |  |  |  |
|      | push, pop, print, peek, peep, change, exit.                                     |  |  |  |
|      | 2.2 Write a program to find out factorial of number using recursion (stack).    |  |  |  |
|      | 2.3 Write a program to print string in reverse order using stack.               |  |  |  |
|      | 2.4 Write a program to find factorial of a given integer number using stack.    |  |  |  |
|      | 2.5 Write a program to find the power of a given number using stack.            |  |  |  |
|      | 2.6 Write a program to find GCD of given two numbers.                           |  |  |  |
|      | 2.7 Write a program to find Smallest Common Divisor of a given number.          |  |  |  |
|      | 2.8 Write a program find Minimum and Maximum number from the given array        |  |  |  |
|      | using Recursion.                                                                |  |  |  |
|      | 2.9 Write a program which performs following operations using simple queue. :   |  |  |  |
|      | insert() -> delete() -> display()                                               |  |  |  |
|      | 2.10 Write a program which performs following operations using circular queue.  |  |  |  |
|      | :insert() -> delete() -> display()                                              |  |  |  |
|      |                                                                                 |  |  |  |
| 3    | 3.1 Write a program to perform following operation on singly linked list:       |  |  |  |
|      | a. Create a linked list                                                         |  |  |  |
|      | b. Display it                                                                   |  |  |  |
|      | 3.2 Write a program to perform following operation on singly linked list:       |  |  |  |
|      | a. insert a node at the starting of the list                                    |  |  |  |
|      | b. insert a node at the end of the list                                         |  |  |  |





- 3.3 Write a program to perform following operation on singly linked list:
  - a. insert a node after the specific node
- b. insert a node before the specific node
- 3.4 Write a program to perform following operation on Doubly linked list:
- a. Create a linked list
- b. Display it
- 3.5 Write a program to perform following operation on Doubly linked list:
- a. insert a node at the starting of the list
- b, insert a node at the end of the list
- 3.6 Write a program to perform following operation on Doubly linked list:
- a. insert a node after the specific node
- b. insert a node before the specific node
- 3.7 Write a program to perform following operation on Circular Singly linked list:
- a. Create a linked list
- b. Display it
- 3.8 Write a program to perform following operation on Circular Singly linked list:
- a. insert a node at the starting of the list
- b. insert a node at the end of the list
- 3.9 Write a program to perform following operation on Circular Singly linked list:
- a. insert a node after the specific node
- b. insert a node before the specific node
- 3.10 Write a program to count the number of nodes available in the Singly linked list created before.
- 4.1 Write a program to create a binary tree . Traverse tree in preorder , postorder and inorder.
  - 4.2 Write a program to perform following operations on Binary search tree:
  - a. insert
  - b. delete
  - c. height of the tree
  - d. depth of the tree
  - e. total no. of nodes in the tree